期刊文献+

桥梁颤振稳定峡谷效应时域分析 被引量:1

TIME DOMAIN ANALYSIS OF VALLEY EFFECTS ON BRIDGE FLUTTER STABILITY
原文传递
导出
摘要 以地形模型风场测试为手段,测试了山区峡谷桥址的平均风水平分布特性。在风洞试验所得颤振导数的基础上,采用阶跃函数对桥梁断面自激力进行模拟,并对模拟准确性进行了分析与校核,继而推出时域颤振动力有限元分析过程中桥梁断面自激力的递推表达式。在此基础上,最后考虑峡谷桥梁桥面处平均风速的水平分布,对大跨度悬索桥颤振稳定性进行了数值分析。分析结果表明:考虑峡谷平均风速沿加劲梁展向不均匀分布后对桥梁颤振临界风速值有明显的影响,较大幅度地提高了临界风速值。相比之下,按目前我国公路桥梁抗风设计规范取水平向均匀分布风速进行山区峡谷桥梁进行颤振稳定性验算会得到偏于保守的结果。 Resort to the topography model, the horizontal distribution characteristics of mean wind speed in a mountain valley bridge site is tested. Based on the wind-tunnel-tested flutter derivatives, the indicial functions are firstly adopted in the literature to simulate the self-excited aerodynamic forces on bridge girder sections, and, of which the simulation veracity is inspected. Then a recurrence algorithm for self-excited aerodynamic forces on bridge sections is deduced. The aerodynamic forces are indispensable in the dynamic finite element analysis,. Finally, the aerodynamic stability of a long-span valley bridge is investigated in time domain considering the influence of horizontal un-uniform distributed mean wind speed. The numerical results show that the horizontal distribution mode of mean wind speed in valley has an obvious impact on the bridge flutter threshold, which exhibits mainly in enhancing the critical flutter wind speed. In contrast, ignoring the wind horizontal distribution characteristics, as guided by the wind-Resistant code of China highway bridges, may lead to conservative results.
出处 《工程力学》 EI CSCD 北大核心 2010年第11期113-119,共7页 Engineering Mechanics
基金 国家自然科学基金项目(50708036) 国家自然科学基金重点项目(50738002)
关键词 峡谷 桥梁 颤振 阶跃函数 时域 valley bridge flutter indicial function time-domain
  • 相关文献

参考文献11

  • 1Li Q C, Lin Y K. New stochastic theory for bridge stability in turbulent flow. II [J]. Journal of Engineering Mechanics, 1995, 121(1): 102--116.
  • 2Scanlan R H. Motion-related body force functions in two-dimensional low-speed flow [J]. Journal of Fluids and Structures, 2000, 14(1): 49--63.
  • 3Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives [J]. ASCE, Journal of Engineering Mechanics, 1971, 97(10): 1717-- 1737.
  • 4Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter JR]. NACA Report 496, U.S. Advisory Committee for Aeronautics, Langley, VA, USA, 1934.
  • 5Caracoglia L, Jones N P. Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck sections [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(3): 371--402.
  • 6Borri C, Costa C, Zahlten W. Non-stationary flow forces for the numerical simulation of aeroelastic instability of bridge decks [J]. Computers and Structures, 2002, 80(6): 1071--1079.
  • 7Lazzari M, Viraliani R V, Saetta A V. Aeroelastic forces and dynamic response of long-span bridges [J]. International Journal for Numerical Methods in Engineering, 2004, 60(6): 1011 -- 1048.
  • 8Costa C, Borri C. Application of indicial functions in bridge deck aeroelasticity [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(9): 859--881.
  • 9Salvatori L, Borri C. Frequency and time-domain methods for the numerical modeling of full-bridge aeroelasticity [J]. Computers and Structures, 2007, 85(4): 675--687.
  • 10Scanlan R H, Beliveau J, Budlong K. Indicial aerodynamic functions for bridge decks [J]. Journal of the Engineering Mechanics Division, 1974, 100(8): 657--671.

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部