期刊文献+

质量调整的价格指数编制中hedonic插补法的应用 被引量:6

The Application of Hedonic Imputation Method in the Quality-adjusted Price Index
原文传递
导出
摘要 在数据缺失的情况下,插补法是一种常用的推断缺失数据的方法。在价格指数的编制中,在基期存在的产品可能在报告期从市面上消失,或者报告期出现了新产品。这都可以看作是数据缺失的情形。同时由于前后时期产品质量发生变化,所编制的价格指数中可能包含"质量变化偏差"。Hedonic插补法将hedonic方法与缺失数据的插补方法结合起来,既处理了缺失数据,又克服了价格指数中的质量变化偏差。本文讨论了hedonic插补法的多种可能形式,并比较了各种方法的特点。本文还利用中国笔记本电脑的数据编制了hedonic插补价格指数,进行了相关的实证分析。 Imputation method is a widely used approach to dealing with missing data. When compiling the price indices, missing data are often encountered. Some products disappear in the current period temporarily or permanently, or new products appear in the market. At the same time quality change may occur, so the price index may be biased with "quality change bias". Hedonic imputation method could impute the missing price, also reduce the quality change bias. The paper discusses the different forms of hedonic imputation indexes and compares their different characteristics. In the final part the paper empirically compiles the hedonic imputation index for notebook PC and draws some conclusions.
作者 高艳云
出处 《数理统计与管理》 CSSCI 北大核心 2010年第6期1077-1083,共7页 Journal of Applied Statistics and Management
基金 国家社科基金课题(05CTJ001)的资助
关键词 缺失数据 hedonic插补法 价格指数 质量变化偏差 missing data, hedonic imputation method, price index, quality change bias
  • 相关文献

参考文献2

二级参考文献40

  • 1杨军,邹国华.比例Bootstrap及其方差估计的相合性[J].中国科学院研究生院学报,2007,24(3):273-279. 被引量:2
  • 2Roderick J. A. Little, Donald B. Rubin Statistical Analysis with Missing Data [M].NEW YORK :JOHN WILEY & SONS INC.2002:218-265.
  • 3[美]JamesO.Berger 贾乃光译.统计决策论及贝叶斯分析[M].北京:中国统计出版社,1997.P624-625.
  • 4Donald. B.Rubin. Multiple Imputation For Nonresponse In Surveys[M].NEW YORK :JOHN WILEY & SONS INC.1987:75-112.
  • 5Little R J A and Rubin D B. Statistical Analysis with Missing Data [M]. John Wiley and Sons, 2002(2nd Ed.).孙山泽译,缺失数据统计分析,中国统计出版社,2004.
  • 6Rao J N K. On variance estimation with imputed survey data [J]. J. Amer. Statist. Assoc., 1996, 91: 499-506.
  • 7Rubin D B. Multiple imputations in sample survey [C]. Proc. Survey Res. Meth. Sec., Am. Statist. Assoc., 1978: 20-34.
  • 8Rubin D B. Multiple Imputation for Nonresponse in surveys [M]. John Wiley and Sons, 1987.
  • 9Kim J K and Park H. Imputation using response probability [J]. The Canadian Journal of Statistics, 2006, 34 (1): 171-182.
  • 10Rubin D B. Inference and missing data (with discussion) [J]. Biometrika, 1976, 63: 581-592.

共引文献45

同被引文献67

  • 1许宪春,张美慧,张钟文.数字化转型与经济社会统计的挑战和创新[J].统计研究,2021,38(1):15-26. 被引量:70
  • 2贺真真.配对比较法及其在教育研究中的应用[J].课程.教材.教法,2006,26(9):76-79. 被引量:10
  • 3孙琳琳,任若恩.用Hedonic函数估计中国PC机价格指数[J].北京航空航天大学学报(社会科学版),2007,20(2):18-21. 被引量:3
  • 4Armknecht,P.A.and D.Weyback.1989.“Adjustments for Quality Change in the U.S.Consumer Price Index”,in Journal of Official Statistics,Vol.5,No.2,pp.107-123.
  • 5Alterman,W.F.,W.E.Diewert and R.C.Feenstra.1999.International Trade Price Indexes and Seasonal Commodities(Washington,D.C.:Bureau of Labor Statistics).
  • 6Anderson,R.G.,B.E.Jones and T.Nesmith.1997.“Building New Monetary Services Indexes:Concepts,Data and Methods”,in Federal Reserve Bank of St.Louis Review,Vol.79,No.1,pp.53-83.
  • 7Diewert,W.E.2001.“The Consumer Price Index and Index Number Purpose”,in Journal of Economic and Social Measurement,Vol.27,pp.167-248.
  • 8Diewert,W.Erwin,2005,“Identilying Important Areas for Future Price Work at the International Level”.paper presented at the OECD Seminar“Inflation Measures:Too High-Too Low-Internationally Comparable?”,Paris,France,June21-22.
  • 9Ha,Yuong,and Payne,Lyall,2004,“Calculation and Structure of the Consumers Price Index”,background paper edited and updatedfor the2004CPI Revision Advisory Committee,Statistics New Zealand.
  • 10Ladiray,D.,Quenneville B.,2001.Seasonal adjustment with x-11 Methods.NewYork:Springer-Verlag New York,Inc.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部