期刊文献+

基于UKF的交流异步电力测功机软测量模型 被引量:1

Soft Sensor Modal of AC Asynchronous Electrical Dynamometer Based on UKF
下载PDF
导出
摘要 研究汽车发动机性能,针对解决目前交流异步电力测功机系统转速和转矩的测量方法复杂、测试系统成本高等问题,从交流异步电力测功机的五阶状态方程出发,将系统加载转矩作为未知状态,为了提高测量的精度和转速的稳定性,建立了新的六阶交流异步电力测功机状态方程。在此基础上,采用无轨迹卡尔曼滤波算法(UKF)对转速和转矩进行估计,建立基于UKF的交流异步电力测功机系统软测量模型。实验结果表明,模型能对系统的转速和转矩进行有效的估计,为发动机等传动设备的输入输出机械功率测试提供了一种新的方法。 In order to solve the problem of very expensive and complicated measurement system which is used for speed and torque of the AC asynchronous electrical dynamometer,begin with the fifth-order system equation of the AC asynchronous electrical dynamometer,a new sixth-order equation is proposed using torque as unknown input.Then the unscented Kalman filter(UKF) is used to estimate the speed and torque,and a soft sensor model based on the unscented Kalman filter(UKF) is put forward.The experimental result proves that the soft sensor model can provide an effective estimate for the speed and torque,and it affords a new method for the measurement of the input power,output power and the torque in the power-mechanical field.
出处 《计算机仿真》 CSCD 北大核心 2010年第11期286-290,共5页 Computer Simulation
关键词 软测量 交流异步电力测功机 数学模型 无轨迹卡尔曼滤波 Soft-sensing AC asynchronous electrical dynamometer Mathematic model Unsecured Kalman Filter
  • 相关文献

参考文献8

二级参考文献92

  • 1藏英杰 吴守箴.交流电机的变频调速[M].中国铁道出版社,1984..
  • 2汤蕴miao 史乃.电机学[M].西安交通大学出版社,1993..
  • 3-.西门子6SE70型变频器使用说明书[M].,..
  • 4邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004..
  • 5Barut M, Seta B, Metin G. Speed- Sensorless Estimation for Induction Motors Using Extended Kalman Filters[J]. IEEE Transactions on Industrial Electronics, 2007,54( 1 ) ; 272-280.
  • 6Liberzon D, Morsea S. Basic Problems in Stability and Design of Switched Systems[J]. IEEE Control System Magazine, 1999,19(5) : 59-70.
  • 7Lee J, Kim Y, Hyuk N, et al. Loss Distribution of Three-Phase Induction Motor Fed by Pulsewidth -Modulated Inverter[J]. IEEE Transactions on Magnetics, 2004,40 (2) : 762-765.
  • 8胡崇岳.现代交流调速技术[M].北京:机械工业出版社,2001..
  • 9Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 10Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.

共引文献256

同被引文献45

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部