期刊文献+

基于小波包提取特征的声纹识别 被引量:4

Wavelet Packet Based Feature Extraction for Voice Recognition
下载PDF
导出
摘要 关于生物特征识别问题,人耳的听觉识别精度很重要。识别研究难点在于如何选取有效的耐噪特征参数,以提高识别率,传统的特征参数都将语音视为一种平稳信号进行处理,不能很好的反映语音信号的动态特性,故不能得到较好的识别率。针对提高抗噪声性能和识别声信精度,提出了一种新的特征参数(DWP-MFCC),用在感知倒谱分析(Mel-Cepstrum)的基础上引入多分辨率小波包分析技术,通过提高时频分辨率,增强语音动态信息,克服了原有单一线性分析的不足,并基于矢量量化(VQ)系统进行说话人识别实验。实验证明,与LPCC和MFCC参数相比采用新方法使系统的识别率得到显著的提高。 The challenge of voiceprint recognition is how to select an effective anti-noise feature parameters to improve the recognition rate.The traditional voice feature parameters which is regarded as a stationary signal processing do not well reflect the dynamic characteristics of speech signal,and it doesn’t acquire a good recognition rate.In view of this difficulty,the paper has proposed a new kind of speech feature(DWP-MFCC).That is based on MelCepstrum Analysis and Multi-scale Wavelet Packet Analysis by raising time-frequency resolution and enhancing voice dynamic information,which overcomes the existing lack of a single linear analysis and carries out the speaker recognition experiments based on vector quantization(VQ) system.The experiment results show that this kind of feature has great immunity to the environmental noise.And the system built on DWP-MFCC has better identification accuracy than on LPCC and MFCC.
出处 《计算机仿真》 CSCD 北大核心 2010年第11期324-327,共4页 Computer Simulation
关键词 声纹识别 小波包分析 矢量量化 Voiceprint recognition Wavelet packet analysis Vector quantization
  • 相关文献

参考文献7

二级参考文献19

  • 1赵淳生.超声马达的发展与应用[J].测控技术,1996,15(1):8-10. 被引量:27
  • 2边肇祺.模式识别[M].清华大学出版社,1999..
  • 3陈永校 郭吉丰.超声波电机[M].杭州:浙江大学出版社,1994..
  • 4Gowdy J N, Tufekci Z. Mel-Scaled discrete wavelet coefficients for speech recognition [EB/OL]. http:∥ieeexplore.ieee.org/ie15/6939/18687/00861829.pdf, 2000-06-01/2004-02-06.
  • 5Torres H M, Rufiner H L. Automatic speaker identification by means of Mel cepstrum, wavelets and wavelet packets [EB/OL]. http:∥ieeexplore.ieee.org/ie15/7218/19434/00897886.pdf, 2000-07-01/2004-02-08.
  • 6Farooq O, Datta S. Mel filter-Like admissible wavelet packet structure for speech recognition [J]. IEEE Signal Processing Letters, 2001, 8(7): 196-198.
  • 7Reynodls D, Rose R. Robust text-independent speaker identification using Gaussian mixture speaker models [J]. IEEE Trans on Speech and Audio processing, 1995, 3(1): 72-83.
  • 8营野伸和.超音波モ—タ[J].日本时计学会志,1988,(124).
  • 9刘贵忠,邸双亮.小波分析及应用[M].第一版,西安:西安电子科技大学出版社,1992
  • 10Tomi Kinnunen,Ismo Karkkainen.Class-Discriminative Weighted Distortion Measure for VQ-based Speaker Identification[J].SSPP&SPR 2002,LNCS2396,2002:681~688

共引文献366

同被引文献33

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部