期刊文献+

线性预测分析在连接词语音识别中的研究 被引量:2

Research of Linear Prediction Analysis in Conjunction Speech Recognition
下载PDF
导出
摘要 特征参数的提取是关系到语音识别系统性能好坏的关键,而线性预测分析是目前普遍采用的特征参数提取方法。针对在连接词和连续语音识别系统中,传统的线性预测系数已不能满足特征提取的要求,研究采用了三种主要的线性预测推演参数,即线性预测反射系数、线谱对系数和线性预测倒谱系数,及其在连接词语音识别系统中的应用,并进行计算机仿真。仿真结果表明,在输入语音库与信噪比一致的情况下,线性预测倒谱系数的识别率最高。从而证明,在包含语义特征信息和说话人特征方面,线性预测倒谱系数性能要优于线谱对系数和线性预测反射系数。 Extraction of feature parameters is related to the performance of speech recognition system,and the linear prediction analysis is currently widely used feature extraction methods.In conjunction and continuous speech recognition system,the traditional linear prediction coefficient(LPC) has been unable to meet the requirements of feature extraction.This article discusses three main parameters of the linear predictive inference,they are linear prediction reflection coefficient(LPRC),line spectral pairs(LSP) and linear prediction cepstrum coefficient(LPCC),and the applications in conjunction speech recognition system.Through computer simulation,its performances are analyzed and compared.The simulation results show that when the ratio of signal to noise is accordant with the input speech corpus,the linear prediction cepstrum coefficient is of the highest recognition rate.Therefore,the semantic features,such as contains information and speaker characteristics,linear prediction cepstrum coefficient,are superior to the performance of line spectral pairs and reflection coefficients.
出处 《计算机仿真》 CSCD 北大核心 2010年第11期340-344,共5页 Computer Simulation
关键词 线性预测反射系数 线谱对系数 线性预测倒谱系数 语音识别 Linear prediction reflection coefficient Line spectral pairs Linear prediction cepstrum coefficient Speech recognition
  • 相关文献

参考文献5

  • 1胡航.语音信号处理[M].哈尔滨:哈尔滨工业大学出版社,1999.
  • 2Fujii Kensaku, hoh Yoshio, Fukui Yutaka: A noise reduction method based on linear prediction analysis [ J ]. ICASSP, 2002. Electronics and Communications, 2003,86 (3) : 1 -10.
  • 3龙银东,刘宇红,敬岚,乔卫民.在MATLAB环境下实现的语音识别[J].微计算机信息,2007(34):255-256. 被引量:9
  • 4Changfu Wang, Beiqian Dai, Jinsong Zhang, Li Hui, Liu Yi. A scheme for high quality linear prediction analysis of speech[ C].Signal Processing, 3rd International Conference on, 1996. 694-697.
  • 5P E McSharry, I M Moroz, S J Roberts. Testing the assumptions of linear prediction analysis in normal vowels [ J ]. Journal of the Acoustical Society of America, 2006,119 ( 1 ) : 549 - 558.

二级参考文献4

  • 1江官星,王建英.一种改进的检测语音端点的方法[J].微计算机信息,2006,22(05S):138-139. 被引量:27
  • 2何强,何英.MATLAB展编程[M].北京:清华人学出版社,2002.
  • 3[美]L.R.拉宾纳,R.W.谢弗.语音信号数字处理[M]北京:科学出版社.1988.
  • 4Duane Hanselman,Bruce Littlefield.Mastering MATLAB:a comprehensive tutorial and reference. Prentitice[M] Hall,1996.

共引文献9

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部