期刊文献+

一种基于谱聚类的聚类核半监督支持向量机 被引量:2

A Cluster Kernel Semi-supervised Support Vector Machine Based on Spectral Clustering
原文传递
导出
摘要 针对传统半监督支持向量机的高斯核函数无法恰当描述流形数据特性,从而导致流形数据分类精度下降的问题,提出一种基于谱聚类的聚类核半监督支持向量机.利用谱聚类方法在特征向量空间中对原始样本数据进行重新表述,使得在新表述中同一聚类中的样本能够更好地积聚在一起,构建聚类核函数,并进而构造聚类核半监督支持向量机,使样本更好地满足半监督学习必须遵循的聚类假设.研究结果表明:聚类核半监督支持向量机对未标记样本的分类精度高且算法性能稳定,对控制参数的设置不敏感,适于解决流形数据的分类问题. The Gaussian kernel function used in traditional semi-supervised support vector machines(S3 VMs)cannot describe the characteristics of manifold data properly,which result in poor classification accuracy of manifold dataset.In order to improve the classification accuracy,a kind of cluster kernel S3 VM(CKS^3 VM)based on a spectral clustering method was proposed.The spectral clustering method was used to re-represent original data samples in a eigenvector space so as to make the data samples existed in one cluster can gather together much better.A cluster kernel function was constructed upon the eigenvector space and the CKS3 VM was designed further.The proposed CKS3 VM can make the data samples satisfy the cluster assumption that is key for successful semi-supervised learning.The experimental results show that the CKS3 VM has high classification accuracy on unlabeled samples,stable performance and not being sensitive to control parameters,which is applicable for the classification problem of manifold data.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2010年第6期886-890,共5页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60804022 60974050 61072094) 教育部新世纪优秀人才支持计划项目(NCET-08-0836) 江苏省自然科学基金项目(BK2008126) 霍英东教育基金会青年教师基金项目(121066)
关键词 半监督学习 支持向量机 谱聚类 聚类核 流形数据 semi-supervised learning support vector machine spectral clustering cluster kernel manifold data
  • 相关文献

参考文献11

  • 1王雪松,田西兰,程玉虎.基于支持向量机的连续状态空间Q学习[J].中国矿业大学学报,2008,37(1):93-98. 被引量:5
  • 2VAPNIK V, STERIN A. On structural risk minimization or overall risk in a problem of pattern recognition[J]. Automation and Remote Control, 1977, 10 (3) : 1495-1503.
  • 3JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the 16th International Conference on Machine Learning. New York: ACM Press, 1999: 200- 209.
  • 4CHAPELLE O, ZIEN A. Semi-supervised classification by low density separation[C]//Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers Inc. , 2005: 57-64.
  • 5CHAPELLE O, CHI M, ZIEN A. A continuation method for semi-supervised SVMs[C]//Proeeedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 185-192.
  • 6COLLOBERT R, SINZ F, WESTON J, BOTTOU L. Large scale transductive SVMs[J]. Journal of Machine Learning Research, 2006, 7: 1687-1712.
  • 7CHAPELLE O, SINDHWANI V, KEERTHI S S. Optimization techniques for semi-supervised support vector machines [J]. Journal of Machine Learning Research, 2008, 9(2): 203-233.
  • 8SAKAMOTO H, NAKAJIMA Y, SAKAKIBARA K, et al. Prediction of the O-glycosylation by support vector machines and semi-supervised learning [J]. Lecture Notes in Computer Science, 2009, 5506 (1) : 986-994.
  • 9BACH F R, JORDAN M I. Learning spectral clustering[C]//Proceedings of the 17th Annual Conference on Neural Information Processing Systems. Massachusetts: MIT Press, 2003: 305-312.
  • 10ZHOU D Y, BOUSQUET O, LAL T N, WESTON J, SCHLKOPF B. Learning with local and global consistency[C]//Proceedings of the 17th Annual Conference on Neural Information Processing Systems. Massachusetts: MIT Press, 2003: 321- 328.

二级参考文献12

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2柳晓菁,易建强,赵冬斌,王伟.基于最小二乘支持向量机的自适应逆扰动消除控制系统[J].控制与决策,2005,20(8):947-950. 被引量:13
  • 3王雪松,程玉虎,易建强.一种自适应模糊Actor-Critic学习[J].控制与决策,2006,21(9):1068-1072. 被引量:3
  • 4SUTTON R S,BARTO A G.Reinforcement learning:an introduction[M].Cambridge:The MIT Press,1998.
  • 5WATKINS C J C H,DAYAN P.Technical report:Q-learning[J].Machine Learning,1992,8(3):279-292.
  • 6PREU P,DELEPOULLE S,DARCHEVILLE J C.A generic architecture for adaptive agents based on reinforcement learning[J].Information Sciences,2004,161(1/2):37-55.
  • 7VAPNIK V.The nature of statistical learning theory[M].New York:Springer Verlag,1995.
  • 8BO C M,WANG Z Q,LU A J.Study and application on dynamic modeling method based on SVM and sliding time window techniques[C]// Proceedings of the 6th World Congress on Intelligent Control and Automation.Piscataway:Institute of Electrical and Electronics Engineers Inc.Press,2006:4714-4718.
  • 9KAELBLING L P,LITTMAN M L,MOORE A W.Reinforcement learning:a survey[J].Journal of Artificial Intelligence Research,1996,4:237-285.
  • 10蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制[J].自动化学报,1998,24(5):662-666. 被引量:55

共引文献4

同被引文献27

  • 1雷斌,沈宁.DCS技术在选煤厂集中控制系统中的研究与应用[J].工矿自动化,2021,47(S01):119-121. 被引量:13
  • 2MATHER P M, KOCH M. Computer processing of remote- ly-sensed images [ M ]. 4th ed. New York : A John Wiley & Sons, Ltd., Publication, 2011:229-284.
  • 3ALAJLAN N, BAZI Y, MELGANI F, et al. Fusion of super- vised and unsupervised learning for improved classification of hyperspectral images [ J ]. Information Sciences, 2012, 217:39-55.
  • 4JOHNSON B, XIE Z X. Unsupervised image segmentation evaluation and refinement using a multi-scale approach [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4) :473-483.
  • 5DUNDAR M M, LANDGREBE D A. A cost-effective semi- supervised classifier approach with kernels [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 ( 1 ) :264-270.
  • 6MANTRACHA A, VAN ZEEBROECK N, FRANCQ P, et al. Semi-supervised classification and betweenness com- putation on large, sparse, directed graphs [ J J. Pattern Recognition, 2011, 44 : 1212-1224.
  • 7CAMPS-VALLS G, BANDOS T, ZHOU D Y. Semi-super- vised graph-based hyperspectral image classification[ J ]. IEEE Transactions on Geoscience and Remote Sensing,2007, 45 (10) :3044-3054.
  • 8REBAGLIATI N, VERRI A. Spectral clustering with more than K eigenvectors [ J ]. Neurocomputing, 2011, 74 ( 9 ) : 1391-1401.
  • 9STREHL A, GHOSH J. Cluster ensembles-a knowledge re- use framework for combining partitions [ J ]. Journal of Ma- chine Learning Research, 2002, 3:583-617.
  • 10TUMER K, AGOGINO A K. Ensemble clustering with vo- ting active clusters [ J ]. Pattern Recognition Letters, 2008, 29 ( 14 ) : 1947-1953.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部