期刊文献+

改进的粒子滤波及其在GPS动态定位中的应用 被引量:2

The Improved Method of Particle Filtering and Application for Kinematic GPS Positioning
下载PDF
导出
摘要 针对城市环境中GPS动态定位系统的特点,提出了一种基于粒子滤波的GPS动态定位算法。与传统卡尔曼滤波算法相比,该算法利用观测伪距误差分布建立重要的密度函数,能够处理噪声符合非高斯分布的情况,且无需对观测方程线性化,提高了GPS动态定位的精度。通过实际算例分析,验证了该算法的有效性。 According to the characteristic of kinematic GPS positioning in urban environment, an algorithm of kinematic GPS positioning based on particle filtering is proposed. Compared with algorithm of traditional Kalman filtering, the new algorithm uses the pseudo- range error distribution establish importance density, and can deal with error appearing non- Gaussian distribution without linearizing observation equation. It is showed from the actual example that the new algorithm improves accuracy of kinematic GPS positioning.
作者 秦臻
出处 《全球定位系统》 2010年第5期25-28,共4页 Gnss World of China
基金 教育部博士点基金(200802900501&200802901516) 江苏省自然科学基金(BK2009099)
关键词 动态定位 粒子滤波 卡尔曼滤波 定位精度 Dynamic positioning~ particle filtering Klman filtering positioning accuracy
  • 相关文献

参考文献10

二级参考文献58

共引文献299

同被引文献33

  • 1冯仲科,刘永霞,王小昆,邓向瑞.林地面积量算方法的比较研究[J].北京林业大学学报,2004,26(5):17-21. 被引量:17
  • 2田世君,陈俊,皮亦鸣.粒子滤波在高动态GPS定位中的应用[J].测绘学报,2007,36(3):274-278. 被引量:13
  • 3ANTHONY C, JINLING W, CHRIS R. Bridging GPS outages in theagricultural environment using virtualite measurements. Location andNavigation Symposium, 2008,7(6) :497- 504.
  • 4YONG H,HAIHONG Y, HUI F. Study on improving GPS measure-ment accuracy. Instrumentation and Measurement Technology Confer-ence, Canada, 2005.
  • 5MICHIEL D. GPS based bistatic radar - beyond specular reflection.24th Digital Avionics Systems Conference, Williamsburg, VA, USA,2005.
  • 6GUPTA S, LOW M, TAN C. The new approach of simulate GPSmeasurements. Position Location and Navigation Symposium,1998,7(1):236-242.
  • 7SHUPING G,ZHANGHAO Z, MATTHEW T. GPS Spoofing BasedTime Stamp Attack on Real Time Wide Area Monitoring in SmartGrid . IEEE Smart Grid Comm 2012 Symposium - Cyber Securityand Privacy, Nepal, 2012.
  • 8ABDEL-SALAM M. Precise point positioning using un-differencedcode and carrier phase observations. IEEE International Conference,Canada, 2005.
  • 9JULIER S, UHLMANN J. A new extension of the Kalman filter tononlinear systems. Proceedings of SPIE, 1997,2(3):182-193.
  • 10JULIER S, UHLMANN J. A new method for the nonlinear transfor-mation of means and covariance in filters and estimators .IEEE Trans-actions on Automatic Control, 2000,45(3) -.477-482.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部