摘要
为了侦破采用信息技术手段的犯罪活动,需要强大的计算机智能系统。为此,提出一种利用神经网络,对银行客户潜在洗钱风险进行分类的方法,作为完整系统的部分支持。利用主元分析确定最合适的数据集,依靠L-M和贝叶斯正则化方法来训练最优效果的网络。实验结果表明,神经网络在解决目标问题的过程中比较有效。
Computer intelligent system is needed to crack crime activities using information technologies. This paper proposes a study aiming at constructing an effective anti money laundering system together with other respectable researches. A precise mode of BP network is constructed to evaluate the potential risk of money laundering of a certain bank account. Principle components analysis gives an inside view of data structure helping to find better input form for network. Levenberg-Marquardt algorithm accelerates the training process of BP impressively. And on the way generalization Bayesian regularization proves its value. Experimental result of the final system is satisfactory.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第22期181-183,共3页
Computer Engineering
关键词
反洗钱
智能数据分类
BP神经网络
贝叶斯正则
anti money laundering
intelligent data classification
BP neural network
Bayesian regularization