期刊文献+

基于多层神经网络的洗钱风险评估方法 被引量:6

Money Laundry Risk Evaluation Method Based on Multi-level Neural Network
下载PDF
导出
摘要 为了侦破采用信息技术手段的犯罪活动,需要强大的计算机智能系统。为此,提出一种利用神经网络,对银行客户潜在洗钱风险进行分类的方法,作为完整系统的部分支持。利用主元分析确定最合适的数据集,依靠L-M和贝叶斯正则化方法来训练最优效果的网络。实验结果表明,神经网络在解决目标问题的过程中比较有效。 Computer intelligent system is needed to crack crime activities using information technologies. This paper proposes a study aiming at constructing an effective anti money laundering system together with other respectable researches. A precise mode of BP network is constructed to evaluate the potential risk of money laundering of a certain bank account. Principle components analysis gives an inside view of data structure helping to find better input form for network. Levenberg-Marquardt algorithm accelerates the training process of BP impressively. And on the way generalization Bayesian regularization proves its value. Experimental result of the final system is satisfactory.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第22期181-183,共3页 Computer Engineering
关键词 反洗钱 智能数据分类 BP神经网络 贝叶斯正则 anti money laundering intelligent data classification BP neural network Bayesian regularization
  • 相关文献

参考文献5

  • 1Zhang Zhongfei, John J S, Yu P S. Applying Data Mining in Investigating Money Laundering Crimes[C]//Proc. of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: [s. n.], 2003: 747-752.
  • 2Lv Lintao, Ji Na, Zhang Jiulong. A RBF Neural Network Model for Anti-money Laundering[C]//Proc. of International Conference on Wavelet Analysis and Pattern Recognition.[S. l.]: IEEE Press, 2008: 209-215.
  • 3Boyacioglu M A, Kara Y, Baykan O K. Predicting Bank Financial Failures Using Neural Networks, Support Vector Machines and Multivariate Statistical Methods: A Comparative Analysis in the Sample of Savings Deposit Insurance Fund(SD1F) Transferred Banks in Turkey[J]. Expert Systems with Applications, 2009, 36(2): 3355-3366.
  • 4朱继萍,戴君.基于BP网的中长期负荷预测因素优化选择[J].计算机工程,2008,34(18):226-227. 被引量:3
  • 5Foresee F D, Hagan M T. Gauss-Newton Approximation to Bayesian Learning[C]//Proc. of International Conference on Neural Networks. [S.l.]: IEEE Press, 1997: 1930-1935.

二级参考文献5

共引文献2

同被引文献67

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部