期刊文献+

基于多尺度的肿瘤轮廓结构不规则性特征分析 被引量:3

Feature Analysis of Tumors Boundary Structure Irregularity Based on Multi-scale
下载PDF
导出
摘要 皮肤肿瘤轮廓的结构不规则性特征提取在计算机辅助诊断黑色素瘤中具有重要意义。在前期轮廓不规则性的局部分形维基础上,提出基于多尺度曲率的轮廓不规则特征提取方法,采用相邻尺度间特征差异度量来增强大尺度下的甄别良恶性皮肤肿瘤的能力。通过局部分形维和曲率分析比较表明,相邻尺度间特征差异度量方法具有类间Hausdorff距离随尺度增大的特性,但局部分形维较曲率分析具有较大的Hausdorff距离值。实验结果表明,上述方法不仅具有较强的结构不规则性的分类能力,并且有助于削弱纹理不规则性对分类结果的影响。 Feature extraction of structure irregularity for skin lesion boundaries has a great significance in computer-aided diagnosis for melanomas. Based on previous work using local Fractal Dimension(local FD) for contour irregularity descriptions, this paper proposes the feature extraction method of boundary irregularity using multi-scaled curvature analysis. Feature differences from adjacent scales are used to enhance the discrimination power between malignant and benign shin tumors. Comparative experiments of both local FD and curvature analysis show that the features difference of adjacent scales has characteristics of larger inter-class Hausdorff distance with the scale increase, while local FD performs better than curvature analysis with larger Hausdorff distance value. Experimental results show that the two methods not only have strong classification capacity of structure irregularity, but also are helpful to weaken texture irregularity for the classification.
作者 秦波 马莉
出处 《计算机工程》 CAS CSCD 北大核心 2010年第22期200-202,205,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60775016)
关键词 结构不规则性 局部分形维 曲率分析 多尺度分析 structure irregularity local Fractal Dimension(local FD) curvature analysis multi-scale analysis
  • 相关文献

参考文献7

  • 1郭安哲,马莉,和瑞勇,毛俊勇,王文峰.一种基于多尺度局部分形维轮廓不规则特征提取算法[J].计算机系统应用,2009,18(2):110-115. 被引量:1
  • 2Ng V, Coldman A. Diagnosis of Melanoma with Fractal Dimensions[C]//Proc. of IEEE TENCON'93. [S. l.]: IEEE Press, 1993: 514-517.
  • 3Tanaka T, Yamada R, Tanaka M, et al. A Study on the Image Diagnosis of Melanoma[C]//Proc. of the 26th IEEE Annual International Conference on MBES'04.[S. l.]: IEEE Press, 2004: 1597-1600.
  • 4Lee T K. Measuring Border Irregularity and Shape of Cutaneous Melanocytic Lesions[D]. Vancouver, Canada: Simon Fraser University, 2001.
  • 5Ma Li, Xu Weidong, Zhu L. Description of Boundary Irregularity on Multi-scale Local FD for Melanomas[C]//Proc. of the 3rd IEEE International Conference on Bioinformatics and Biomedical Engineering. [S. l.]: IEEE Press, 2009: 1-4.
  • 6钱文光 林小竹.图像轮廓曲率计算与角点提取.仪器仪表学报,2007,28(4):63-68.
  • 7Lin Kwan-Ho, Guo Baofeng, Lam Kin-Man, et al. Human Face Recognition Using a Spatially Weighted Modified Hausdorff Distance[C]//Proc. of 2001 International Symposia Intelligent Multimedia, Video Speech Processing. New York, USA: [s. n.], 2001 477-480.

二级参考文献6

  • 1Vincent Ng' and Andrew Coldman, Terry Fox Laboratory, British Columbia Cancer Agency, Biometry Section,British Columbia Cancer Agency, Vancouver, British Columbia, Canada, Diagnosis of Melanoma with Fractal Dimensions, 1EEE TENCON'93/ Beifm,514 - 517.
  • 2Sachin V.Patwardhan, Atam EDhawan, Patricia A. Relue, Classification of melanoma using tree structured wavelet transforms, Computer Methods and Programs in Biomedicine, 2003,72:223 - 239.
  • 3Aribisala,BenjaminS.and Claridge,Ela.A border irregularity measure using a modified conditional entropy method as a malignant melanoma predictor.Lecture Notes in Computer Science. v 3656 LNCS, 2005:914 - 921.
  • 4Jayalalitha G, Uthayakumar R. Estimating the Skin Cancer using Fractals.Intemational Conference on Computational Intelligence and Multimedia Applications 2007:307 - 312.
  • 5Alan H.S. Chart,Derek K.T. So, Measurement and quantification of visual lobe shape characteristics. International Journal of Induslrial Ergonomics, 2006,36:541 - 552.
  • 6Tanaka T, Yamada R, Tanaka M, Shimizu K, Tanaka M, Oka H. A Study on the Image Diagnosis of Melanoma. Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA, 2004.

共引文献3

同被引文献31

  • 1Lee T K,David M,Atkins M S.Irregularity Index: A New Border Irregularity Measure for Cutaneous Lesions[J].Journal of Medical Image Analysis,2003,71(1): 47-64.
  • 2Justin M Z,Khnan M I.Statistical Analysis of Fractal-based Brain Tumor Detection Algorithms[J].Journal of Magnetic Resonance Imaging,2005,23(5): 671-678.
  • 3Vincent N,Andrew C.Diagnosis of Melanoma with Fractal Di- mensions[C]//Proc.of the 10th IEEE Region Conference on Com- puter,Communication,Control and Power Engineering.Beijing,China: IEEE Press,1993.
  • 4Bostock R T J,Claridge E,Harget A J,et al.Towards a Neural Network Based System for Skin Cancer Diagnosis[C]//Proc.of the 3rd International Conference on Artificial Neural Networks.[S.l.]: IEEE Press,1993.
  • 5Li Ma,Xu Weidong,Zhu Lei.Description of Boundary Irregularity on Multi-scale Local FD for Melanomas[C]//Proc.of the 3rd International Conference on Bioinformatics and Biomedical Engi- neering.Beijing,China: IEEE Press,2009.
  • 6Patwardhan V S,Dhawan P A,Relue A P.Classification of Melanoma Using Tree Structured Wavelet Transforms[J].Com- puter Methods and Programs in Biomedicine,2003,72(3): 223- 239.
  • 7Li Yun,Wu Zhongfu,Liu Jiamin,et al.Efficient Feature Selection for High-dimensional Data Using Two-level Filter[C]//Proc.of International Conference on Machine Learning and Cybernetics.Chongqing,China: IEEE Press,2004.
  • 8Maglogiannis I, Pavlopoulos S, Koutsouris D. An Integrated Computer Supported Acquisition, Handling and Characterization System for Pigmented Skin Lesions in Dermatological Images[J]. Information Technology in Biomedicine, 2005, 9(1): 86-98.
  • 9Tanaka T, Yamada R, Tanaka M, et al. A Study on the Image Diagnosis of Melanoma[C] //Proc. of IEMBS’04. San Francisco, USA: [s. n.] , 2004: 1597-1600.
  • 10Clawson K M, Morrow P J, Scotney B W. Computerised Skin Lesion Surface Analysis for Pigment Asymmetry Quantifica- tion[C] //Proc. of International Machine Vision and Image Proce- ssing Conference. Kildare, UK: [s. n.] , 2007: 75-82.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部