摘要
文[1]中的定理3给出了结论"(ii)满足(1)式的中间点ξ=ξ(x)是x的可导函数,其导数为ξ′(x)=f′(x)g′(ξ(x)-f′(ξ(x))g′(x))(x-a)[f″(ξ(x))g′(ξ(x))-f′(ξ(x))g″(ξ(x))]"。文[1]在推导此等式时用到了柯西中值定理,本文指出在推导过程中使用柯西中值定理存在的问题,并给出例子对存在的问题作出详细的说明。
A conclusion reached by Theorem 3 in the essay(1) goes like this: "In ξ=ξ(x),x is differentiable function,if a mean value in equation(1) is satisfied by(ii),and therefore its derivative must be ξ/(x)=f/(x)g/(ξ(x)-f/(ξ(x))g/(x))/(x-a)[f//(ξ(x))g/(ξ(x))-f/(ξ(x))g//(ξ(x))]" This equation is derived by using Cauchy mean value theorem in the essay(1).This paper puts forward some different opinions about the use of Cauchy mean value theorem in the essay(1).
出处
《合肥师范学院学报》
2010年第6期13-13,19,共2页
Journal of Hefei Normal University
关键词
柯西中值定理
积分第二中值定理
中间点
Cauchy mean value theorem
the second mean value theorem for integrals
mean value