期刊文献+

运动模糊视频图像在图形处理器平台上的实时恢复 被引量:9

Real-time restoration of motion-blurred video images on GPU
下载PDF
导出
摘要 提出了一种图形处理器优化编程方法,用于实现运动模糊视频图像的实时恢复处理。根据计算统一设备架构(CUDA)的硬件框架特征对GPU的线程块及线程数量进行优化配置,并引入了一种自动内存接合访问的方法,使得GPU的硬件资源得到充分利用。根据图像频谱的对称性去除冗余信息,减少了图像算法在频谱滤波时的数据量,使得GPU对内存的访问次数下降,从而提升了算法效率。实验表明,本文提出的GPU方案的计算性能比传统的CPU平台方案提升了一个数量级,半频谱滤波设计使总时间开销减少20%以上,实验结果证明了本文方案的可行性及有效性。 A Graphic processing Unit(GPU) optimization programming method is presented to apply to the real-time restoration of motion blurred video images. The blocks and threads run on the GPU are optimally set based on the hardware structure of Compute Unified Device Architecture (CUDA), and a memory access method is introduced to implement automatic coalesced access. These are required to make sure the full utilization of the GPU's hardware resource. According to the symmetry property of FFT spectra, the redundant information in the frequency spectrum is eliminated and the number of frequency data filtered by the image algorithm is decreased,by which the amount of GPU memory access for realizing the algorithm optimization is reduced and the computing efficiency is improved. The experiment indicates that the proposed GPU project can improve the computing performance by 10 times as compared with the conventional CPU project, and the design of half-spectrum filtering can reduce the above time consumption by 20%. The experimental results confirm the feasibility and the validity of proposed method.
作者 王晶 李仕
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第10期2262-2268,共7页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2008AA121803) 国家973重点基础发展规划资助项目(No.2009CB72400607)
关键词 视频图像 图像恢复 图形处理器 计算统一设备架构 优化编程 video image image restoration Graphic processing Unit(GPU) Compute Unified Device Achitecture(CUDA) optimization programming
  • 相关文献

参考文献18

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2MORELAND K, ANGEL E. The FFT on a GPU [J]. Proceedings of the ACM SIGGRAPH/Euro graphics Conference on Graphics Hardware, San Diego, 2003 : 112-119.
  • 3KRUGER J, WESTERMANN R. Linear algebra operators for GPU implementation of numerical algorithms [J].ACM Transactions on Graphics, 2003,22(3) :908- 916.
  • 4BOLZ J, FARMER I, GRINSPUN E, et al.. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid [J]. ACM Transactions on Graphics, 2003, 22(3) :917-924.
  • 5HARRIS M J , BAXTER W V, SCHEUERMANN T, et al.. Simulation of cloud dynamics on graphics hardware [C]. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, San Diego, 2003 : 92-101.
  • 6CUNTZ N, KOLB A, STRZODKA R, etal.. Particle level set advection for the interactive visualiza tion of unsteady 3D flow [C]. Proceedings of the Eurographics/IEEE-VGTC Symposium on Visualization, Eindhoven, 2008 : 719- 726.
  • 7ZHOU K, HOU Q M, WANG R, et al.. Realtime Kd-tree construction on graphics hardware[J].ACM Transactions on Graphics, 2008,21(5) :231-241.
  • 8贾平,张葆,孙辉.航空成像像移模糊恢复技术[J].光学精密工程,2006,14(4):697-703. 被引量:38
  • 9BIENOND J, RIESKE J, GERBRANDS J J. A fast Kalman filter for images degraded by both blur and noise [ J ]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31 (5): 1248-1256.
  • 10LIKHTEROV B, KOPEIKA N S. Motion-blurred image restoration using modified inverse all-pole filters. [J]. Journal of Electronic Image, 2004, 13(2) :257-263.

二级参考文献19

共引文献183

同被引文献83

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部