期刊文献+

基于移不变抗混叠轮廓波变换的混合统计模型图像降噪 被引量:3

Mixed statistical model image denoising based on shift-invariant non-aliasing Contourlet transform
下载PDF
导出
摘要 针对抗混叠轮廓波变换缺乏平移不变性的缺陷,构造出具有近似移不变性的抗混叠轮廓波变换。在此基础上,在变换域提出一种混合统计模型图像降噪方法。该方法充分利用变换域信号系数层间层内相关性强、噪声系数无层内相关性且在小尺度下存在较强的假层间相关性的特点,采用混合统计模型对小尺度信号系数进行估计,从而避免了非高斯双变量模型放大噪声系数的风险。实验结果表明,提出的去噪法能克服轮廓波变换中的频谱混叠,避免重构图像出现"划痕"和边缘模糊现象,得到的峰值信噪比(PSNR)值分别比轮廓波硬阈值去噪、轮廓波变换域HMT去噪和抗混叠轮廓波变换域硬阈值去噪平均高2.87,1.32和1.36 dB,在有效去噪的同时,具有较好的图像边缘和细节保护能力。 To avoid shift-variance defects in the original Non-aliasing Contourlet Transform (NACT), a new approximate Shift-invariance NACT(SINACT) was proposed. On this basis, a mixed statistical model image denoising method was presented based on SINACT. This method took full advantage of the characteristics that there were intra-scale and inter-scale correlations for signal coefficients and there was no intra-scale correlation but strong inter-scale correlation for noise coefficients at small scales. Furthermore, a mixed statistical model was used to estimate the small-scale signal coefficients to avoid noise coefficients amplified by the non Gaussian bivariate model. Experimental results show that the proposed scheme can overcome the aliasing in the Contourlet transform domain and can avoid "scratching" and edge blur phenomena in the reconstructed image. The denoising Peak Signal to Noise Ratio(PSNR) of the proposed scheme is on average higher by about 2.87,1.32 and 1.36 dB than those of the Contourlet transform hard-threshold denoising, Contourlet transform domain HMT denoising and hard-threshold denoising based on NACT, respectively,and it can achieve an excellent balance between suppressing noise and preserving as many image details and edges as possible.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第10期2269-2279,共11页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50876120) 重庆市科委自然科学基金资助项目(No.2008BB2340) 重庆理工大学科研启动基金资助项目(No.2009ZD12)
关键词 图像降噪 移不变抗混叠轮廓波变换 层内相关性 层间相关性 混合统计模型 Image denoising Shift-invariance Non-aliasing Contourlet Transform (SINACT) intrascale correlation inter-scale correlation mixed statistical model
  • 相关文献

参考文献16

二级参考文献137

共引文献315

同被引文献25

  • 1DONOHO D L. De-noising by soft-thresholding[J]. IEEE Trans. on Inform. Theory, 1995, 41 (3): 613-627.
  • 2CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and corn pression [J]. IEEE Transaction.; on Image Pro- cessing, 2000, 9(9):1592-1546.
  • 3SENDUR L,SELESNICK I W. Bivariate shrinkage functions forwavelet-based exploiting interseale de- pendency [J]. IEEE Trans. Signal Process'., 2002, 50(11) :2744-2756.
  • 4LUISIER F, BI.U T, UNSER M. A new SURE approach to image denoising: interscale orthonormal wavelet thresholding [ J ]. IEEE Trans. Image Process, 2007,16(3) :593-606.
  • 5PORTILLA J, STRELA V, WAINWRIGHT M J, et al: Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Trans. Image Process,2003,12(11):1338- 1351.
  • 6PIZURICA A, PHILIPS W. Estimating the proba- bility of the presence of a signal of interest in multi- resolution single and multiband image denoising[J]. IEEE Trans. Image Process. , 2006, 15 (3) , 645- 665.
  • 7CANDES E. Ridgelets: Theory and Apptica- tions, Department of Statistics [M]. US Stan- ford University, 1998.
  • 8STARCK J L,CANDES [J,DONOHO D L. The curvelet transform for image denoising[J]. IEEE Trans. Image Process. , 2002,21 : 131-141.
  • 9DO M N, VETTERLI M. The Contourlet trans- form: an efficient directional multiresolution im- age representation [ J ]. IEEE Trans. Image Process. , 2005,14:2091-2106.
  • 10NGUYEN T T, ORAINTARA S. The shiftable complex directional pyramid: Part I. Theoretical aspects [J]. IEEE Trans. Signal Process., 2008,56(10) :4651-4660.

引证文献3

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部