期刊文献+

基于组合带宽均值迁移的快速目标跟踪 被引量:5

Fast object tracking with multi-bandwidth Mean Shift
下载PDF
导出
摘要 为了解决传统均值迁移(Mean shift)目标跟踪算法中跟踪窗口容易收敛至局部概率模式的问题,提出一种基于组合带宽Mean Shift的目标跟踪策略,并建立了一种自适应学习率的over-relaxed优化策略以加速收敛过程。根据目标尺度设定了一组从大到小排列的带宽序列,并依次根据每个带宽进行Mean Shift迭代收敛运算,利用大带宽的平滑作用避开局部概率模式的干扰;依靠小带宽进行精确定位,最终使其收敛到真实目标区域。由于组合带宽Mean Shift会造成一定的额外运算量,为此引入over-relaxed优化策略加速迭代过程。在边界优化算法的收敛条件约束下,根据采用over-re-laxed策略前后相关系数的变化,自适应地调整学习率。实验结果表明,组合带宽Mean Shift能够有效地跟踪快速运动的目标,并且当目标短暂丢失时也有一定的恢复能力;实验采用over-relaxed策略后,收敛次数减少了30%~70%。 An object tracking algorithm with multi-bandwidth and adaptive over-relaxed accelerated convergence was proposed to avoid the local probability mode in a Mean Shift tracking process. First- ly, a monotonically decreasing sequence of bandwidths was obtained according to the object scale. At the first bandwidth, a maximum probability could be found with the Mean Shift, and the next iteration loop started at the previous convergence location. Finally, the best density mode was obtained at the optimal bandwidth. In the convergence process, the compactness of the local probability mode was avoided with the smoothing effect of the large bandwidth, and the precise position of the Object could be found with the optimal bandwidth, which was similar to the object scale. To speed up the convergence, an over-relaxed strategy was introduced to enlarge the step size. Under the convergence rule, the correlation coefficient was used to adjust the learning rate adaptively. The experimental results prove that the proposed tracker with multi-bandwidth Mean Shift is robust in high-speed object tracking, and performs well in occlusions. The experimental results also show that the adaptive over-relaxed strategy reduces the convergence iterations by 30%-70 %.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第10期2297-2305,共9页 Optics and Precision Engineering
基金 "985"工程学科建设投资项目(No.107008200400020)
关键词 目标跟踪 均值迁移 组合带宽 over—relaxed优化 object tracking Mean Shift multi-bandwidth over-relaxed optimization
  • 相关文献

参考文献11

  • 1薛陈,朱明,陈爱华.鲁棒的基于改进Mean-shift的目标跟踪[J].光学精密工程,2010,18(1):234-239. 被引量:25
  • 2孟勃,朱明.MSMC跟踪算法在目标跟踪中的应用[J].光学精密工程,2008,16(1):122-127. 被引量:6
  • 3MAGGIO E, CAVAI.LARO A. Accurate appear ance based bayesian tracking for maneuvering tar gets [J]. Computer Vision and Image Understanding,2009,113:544-555.
  • 4王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 5ZHANG K, KWOK J T, TANG M. Accelerate convergence using dynamic mean shift[C]. Proceedings of the 9th European Conference on Computer Vision, New York, 2006..257-268.
  • 6FASHING M, TOMASI C. Mean Shift is a bound optimization[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2005, 27 (3) 471-474.
  • 7SHEN C, BROOKS M J. A fast global kernel density mode seeking with application to localization and tracking[C]. Proceedings of IEEE International Conference on Computer Vision, Los Alami tos, 2005:1516-1523.
  • 8YIN Z Z, ROBERT T. Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage,2008 : 1-8.
  • 9ELGAMMAL A, DURAISWAMI R. Probabilistic tracking in joint feature-spatial spaces[C]. Proeeedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, D. C, 2004 : 790-797.
  • 10COMANICIU D, MEER P. Kernel-based object tracking [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2003,25(5) :564-577.

二级参考文献40

共引文献82

同被引文献70

  • 1程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3GORDON N, SALMOND D, SMITH A.Novel approach to nonlinear/non-gaussian bayesian state estimation[J].IEE Proceedings on Radar and Signal Processing, 1993,140(2):107-113.
  • 4TING Y, YING W.Collaborative tracking of multiple targets .Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington, DC: IEEE Press,1995:1-8.
  • 5CHANG C, ANSARA R.Kernel particle filter for visual tracking [J].IEEE Signal Processing Letters,2005,12(3):242-245.
  • 6SHAN C F, TAN T N, WEI Y CH.Real-time hand tracking using a mean-shift embedded particle filter [J].Pattern Recognition,2007,40:1958-1962.
  • 7PATRICK P, VERMAAK J.Data fusion for visual tracking with particle [J].IEEE, 2004,92(3):495-513.
  • 8PARAGIOS N, RSMESH V.A MRF-based approach for real-time subway monitoring .Processing of Computer Vision and Pattern Recognition, 2001:295-313.
  • 9COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) :564 - 577.
  • 10COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island : IEEE, 2000 : 142 - 149.

引证文献5

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部