期刊文献+

向量均衡问题的K-T条件 被引量:2

K-T Conditions for Vector Equilibrium Problems
下载PDF
导出
摘要 利用映射的Fréchet可微的概念研究具约束的向量均衡问题的弱有效解,Henig有效解,超有效解以及全局有效解的最优性条件,在不具任何凸性条件下给出了的向量均衡问题的K-T必要性条件,在加上凸性条件下给出了向量均衡问题的K-T充分性条件。 By using the concept of Fréchet differentiability of mapping,it presents the K-T conditions for weakly efficient solution,Henig efficient solution,superefficient solution and globally efficient solution to the vector equilibrium problems with constraints,and gives K-T necessary conditions to the vector equilibrium problems without convexity conditions conditions and Kuhn-Tucker sufficient conditions with convexity conditions.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第5期413-419,424,共8页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10561007) 江西自然科学基金资助项目(2008G250072) 江西省研究生创新专项资金自筹项目(YC09B004)
关键词 向量均衡问题 Fréchet可微 弱有效解 HENIG有效解 超有效解 全局有效解 K-T条件 vector equilibrium problems Fréchet differentiability weakly efficient solution Henig solution superefficient solution globally efficient solution K-T conditions
  • 相关文献

参考文献10

  • 1SONG W.Vector Equilibrium Problems with Set-valued Mapping[A].In:Giannessi F.Variational Inequalities and Vector Equilibria[C].Netherlands:Kluwer,Dordrecht,2000,403-418.
  • 2GIANNESSI F,MASTROENI G,PELLEGRINI L.On the Theory of Vector Optimization and Ariational Inequalities[A].In:Giannessi F.Vector Variational Inequalities and Vector Equilibria[C].Netherlands:Kluwer,Dordrecht,2000,153-215.
  • 3MORGAN J,ROMANIELLO M.Scalarization and Kuhn -Tucker-Like Conditions for Weak Vector Generalized Quasivarational Inequalities[J].Journal of Optimization Theory and Applications,2006,130:309-316.
  • 4GONG X H.Optimality Conditions for Vector Equilibrium Problems[J].Journal of Mathema-tical Analysis and Applications,2008,342:1455-1466.
  • 5YANG X Q,ZHENG X Y.Approximate Solutions and Optimality Conditions of Vector Variatinal Inequalities in Banaeh Spaces[J].Journal of Global Optimization,2008,40:455-462.
  • 6龚循华,马博厂.向量均衡问题的最优性条件[J].南昌大学学报(理科版),2009,33(6):511-517. 被引量:6
  • 7龚循华,熊淑群.类凸向量均衡问题解的最优性条件[J].南昌大学学报(理科版),2009,33(5):409-414. 被引量:7
  • 8BORWEIN J M,ZHUANG D.Super Efficiency in Vector Optimization[J].Transaction of the American Mathematical Society,1993,338:105-122.
  • 9JAHN J.Mathematical Vector Optimization in PartiallyOrdered Linear Spaces[M].Germany:Peter Lang,Frankfurt an Main,1986.
  • 10GONG X H,DONG H B,WANG S Y.Optimality Conditions for Proper Efficient Solutions of Vector Set-valued Optimization[J].Journal of Mathematical Analysis and Applications,2003,284:332-350.

二级参考文献23

  • 1Giannessi F, Mastroeni G, Pellegrini L. On The Theory of Vector Optimization and Variational Inequalities [ A ]. In : Giannessi F (Ed.). Vector Variational Inequalities and Vector Equilibria [ C ]. Netherlands: Kluwer Academic Publishers ,2000 : 153 - 215.
  • 2Morgan J, Romaniello M. Scalarization and Kuhn - Tucker - like Conditions for Weak Vector Generalized Quasivariational Inequalities [ J ]. Journal of Optimization Theory and Applications ,2006,130:309 - 316.
  • 3Yang X Q, Zheng X Y. Approximate Solutions and Optimality Conditions of Vector Variational Inequalities in Banach Spaces [ J ]. Journal of Global Optimization, 2008, 40:455 - 462.
  • 4Gong X H. Optimality Conditions for Vector Equilibrium Problems[ J]. Journal of Mathematical Analysis and Applications ,2008,342 : 1 455 - 1 466.
  • 5Gong X H, Fu W T, Liu W. Super Efficiency for a Vector Equilibrium in Locally Convex Topological Vector Spaces [ A]. In: Giannessi F ( Ed. ). Vector Variational Inequalities and Vector Equilibria[C]. Netherlands: Kluwer Academic Publishers ,2000:233 - 252.
  • 6Gong X H. Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems [ J ]. Journal of Optimization Theory and Applications, 2007,133 : 151 - 161.
  • 7Gong X H. Optimality Conditions for Henig and Globally Proper Efficient Solutions with Ordering Cone has Empty Interior[ J]. Journal of Mathematical Analysis and Applications ,2005,307 : 12 - 31.
  • 8Jahn J. Mathematical Vector Optimization in Partially Ordered Linear Spaces[ M]. Germany:Peter L, 1986.
  • 9Song W. Vector Equilibrium Problems with Set - valued Mapping [ A ]. In: Giannessi F. Variational Inequalities and Vector Equilibria [ C ]. Netherlands: Kluwer, Dordrecht,2000:403 - 418.
  • 10Giannessi F, Mastroeni G, Pellegrini L. On the Theory of Vector Optimization and Ariational Inequalities [ A ]. In:Giannessi F. Vector Variational Inequalities and Vector Equilibria[ C ]. Netherlands : Kluwer, Dordrecht ,2000 : 153 -215.

共引文献9

同被引文献19

  • 1徐登洲,姚庆六等.拓扑线性空间[M].兰州:兰州大学出版社,1987.
  • 2SONG W. Vector Equilibrium Problems with Set-valued Mapping[A]. In:Giannessi F. Variational Inequali- ties and Vector Equilibia[C]. Dordrecht, Netherlands Kluwer, 2000: 403-418.
  • 3GIANNESSI F, MASTROENIG, PELLEGRINIL. On the Theory of Vector Optimization and Ariational Inequalities and Vector Equilibia[C]. Dordrecht, Netherlands Kluwer,2000,153-215.
  • 4MORGAN J, ROMANIELLOM. Sealarization and Kuhn-Ticker-Like Conditions for Weak Vector Generalized Quasivarational Inequalities[J]. Journal of Optimization Theory and Applications, 2006,130:309-316.
  • 5GONG X H. Optimality Conditions for Vector Equilibrium Problems[J]. Journal of Mathematical Analysis and Applications, 2008,342 : 1455-1466.
  • 6YANG X Q,ZHENG X Y. Approximate Solutions and Optimality Conditions of Vector Variatinal Inequalities in Banach Spaces[J]. Journal of Global Optimization, 2008,40:455-462.
  • 7ZHENG X Y,NG K F. The Fermate Rule for Multifunctions on Banach Spaces[J].Math ProgrogramScr A,2005104:69-90.
  • 8BORWEIN J M, ZHUANG D M. Superefficieney in Vector Optimization[J]. Trans Amer Math Soc, 1993, 95:105-122.
  • 9CLARKE F H. Optimization and Nonsmooth Analysis [M]. New York,Woley, 1983.
  • 10MORDUKHOVICH B S, SHAO Y. Nonsmooth Sequential Analysis in Asplund Spaces[J]. Trans Amer Math Soc, 1996,348 : 1235-1280.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部