期刊文献+

基于梯度信息的快速非局部均值图像去噪算法 被引量:2

Fast Non-local Means Image Denoising Algorithm Based on Gradient Information
下载PDF
导出
摘要 非局部均值图像去噪算法具有优秀的去噪效果,但是算法复杂度高,不能应用于高速图像处理系统中。为提高算法执行速度,使其拥有更广泛的应用,提出了基于图像梯度信息的快速非局部均值图像去噪算法。该算法把原始图像划分为大梯度区域和小梯度区域。利用非局部均值算法对大梯度区域去噪,以保证图像边缘的清晰度;利用局部加权平均算法对小梯度区域去噪,以保证灰度变化不大的区域信息的完整性和准确性。算法能提高非局部均值滤波速度,而且能够有效保存图像边缘和细节。 Non-local means algorithm can achieve a state-of-the-art denoising result at the cost of a high complexity,which is not adaptable enough to response a high-speed image processing.In order to lower the complexity,rise the algortithm speed as well as broaden its application,this paper proposed a fast non-local means denoising algorithm based on image gradient.Divide the original image into a large gradient region and a small one.By respectively using non-local means denoising algorithm in large gradient region and local weighted average filtering in small gradient region,we can both ensure the clarity of image edge and a higher credibility of the pixel in the neighborhood so that the completeness and veracity of small gradient region remains unaffected.This proposed algorithm can improve the speed of non-local means filter significantly and reserve the image edges and details effectively as well.
出处 《机械与电子》 2010年第11期3-6,共4页 Machinery & Electronics
基金 国家自然科学基金资助项目(50905064) 教育部留学回国人员科研启动基金资助项目(2008)
关键词 图像去噪 非局部均值 梯度 SOBEL算子 denoising non-local means gradient Sobel operator
  • 相关文献

参考文献12

  • 1GonzalezRafaelC.WoodsRichardE.数字图像处理.2版[M].阮秋琦,阮字智,等译.北京:电子工业出版社,2003.
  • 2Buades A, Coll B, Morel J M. A non - local algorithm for image denoising[J]. Computer Vision and Pattern Recognition, 2005,2 (7) : 60- 65.
  • 3刘艳丽,王进,陈曦,郭延文,彭群生.A Robust and Fast Non-Local Means Algorithm for Image Denoising[J].Journal of Computer Science & Technology,2008,23(2):270-279. 被引量:30
  • 4Coupe P, Yger P, BariUot C. Fast non local means denoising for 3D MR images [ A]. In 9th International Conference on Medical Image Computing and Computer - Assisted lntervention[C]. 2006.33-40.
  • 5Mahmoudi M,Sapiro G. Fast image and video denoising via non - local means of similar neighborhoods[J]. Signal Processing Letters, 2005,12 (12) : 100-110.
  • 6Dauwe A. Goossens B, Luong H Q. A Fast non - local image denoising algorithm[J]. The International Society for Optical Engineering, 2008, (1): 681210 -681217.
  • 7Bilcu R C,Vehvilainen M. Fast nonlocal means for image denoising [R]. San Jose, California, USA, Digital Photography III Conference,2007.
  • 8罗军辉.冯平,哈力旦.等.Madab7.0在数字图像处理中的应用[M].北京:机械工业出版社,2006.
  • 9Bilcu R C, Vehvilainen M. Combined non - local averaging and intersection of confidence intervals for image de - noising[J]. San Diego, California, USA, October 2008,1(1) :1736--1739.
  • 10Darbon J, Cunha A, Chan T F, Osher S,Jensen G J. Fast nonlocal filtering applied to electron cryomicroscopy[J]. International Symposium on Biomedical Imaging, 2008, 30(3): 1331-- 1334.

二级参考文献22

  • 1Lindenbaum M, Fischer M, Bruckstein A M. On Gabor contribution to image enhancement. Pattern Recognition, 1994, 27(1): 1-8.
  • 2Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion (Ⅱ). Journal of Numerical Analysis, 1992, 29(3): 845-866.
  • 3Yin L, Yang R, Gabbouj M, Neuvo Y. Weighted median filters: A tutorial. IEEE Trans. Circuits and Systems, 1996, 43(3): 157-192.
  • 4Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In Proc. the Sixth International Conference on Computer Vision, Bombay, India, 1998, pp.839-846.
  • 5Donoho D. De-noising by soft-thresholding. IEEE Trans. Information Theory, 1995, 41(3): 613-627.
  • 6Chambolle A, DeVore R A, Lee N Y, Lucier B J. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Processing, 1998, 7(1): 319-335.
  • 7Cohen I, Raz S, Malah D. Translation invariant denoising using the minimum description length criterion. Signal Processing, 1999, 75(3): 201-223.
  • 8Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Processing, 2003, 12(11): 1338- 1351.
  • 9Romberg J, Choi H, Baraniuk R G. Bayesian tree-structured wavelet-domain image modeling using hidden Markov models. IEEE Trans. Image Processing, 2001, 10(7): 1056-1068.
  • 10Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005, Vol.2, pp.60-65.

共引文献29

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部