期刊文献+

1-平面图的结构性质及其在无圈边染色上的应用 被引量:11

Structural properties of 1-planar graphs and an application to acyclic edge coloring
原文传递
导出
摘要 一个图称为是1-平面的如果它可以画在一个平面上使得它的每条边最多交叉另外一条边.本文描述了任意1-平面图中小于等于7度点之邻域的局部结构,解决了由Fabrici和Madaras提出的两个关于1-平面图图类中轻图存在性的问题,证明了每个最大度是△的1-平面图G是无圈列表max{2△-2,△+83}-边可选的. A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, we establish a local property of 1-planar graphs which describes the structure in the neighborhood of small vertices (i.e., vertices of degree no more than seven). Meanwhile, some new classes of light subgraphs in 1-planar graphs with the bounded degree are found. Therefore, two open problems presented by Fabrici and Madaras are solved. Furthermore, we prove that each 1-planar graph G with maximum degree △ is acyclically edge L-colorable, where L = max{2△-2, △+ 83}.
出处 《中国科学:数学》 CSCD 北大核心 2010年第10期1025-1032,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10871119 10971121) 高等学校博士学科点专项科研基金(批准号:200804220001)资助项目
关键词 1-平面图 轻图 无圈边染色 列表染色 1-planar graph light graph acyclic edge coloring list coloring
  • 相关文献

参考文献10

  • 1Bondy J A, Murty U S R. (3raph Theory with Applications. New York: North-Holland, 1976.
  • 2Ringel G. Ein sechsfarbenproblem auf der Kugel. Abh Math Sem Univ Hamburg, 1965, 29:107-117.
  • 3Borodin O V. Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs (in Russian). Diskret Anal, 1984, 41:12-26.
  • 4Albertson M O, Mohar B. Coloring vertices and faces of locally planar graphs. Graphs Combin, 2006, 22:289-295.
  • 5Fabrici I, Madaras T. The structure of 1-planar graphs. Discrete Math, 2007, 307:854-865.
  • 6Borodin O V, Kostochka A V, Raspaud A, et al. Acyclic colouring of 1-planar graphs. Discrete Appl Math, 2001, 114: 29-41.
  • 7Alon N, McDiarmid C J H, Reed B A. Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2:277-288.
  • 8Molloy M, Reed B. Further algorithmic aspects of the local lemma. In: Proceedings of the 30th Annual ACM Symposium in Theory of Computing. New York: ACM Press, 1998, 524 -529.
  • 9Fiedorowicz A, Halszczak M, Narayanan N. About acyclic edge colourings of planar graphs. Inform Process Lett, 2008, 108:412-417.
  • 10侯建锋,吴建良,刘桂真,刘彬.平面图和系列平行图的无圈边染色[J].中国科学(A辑),2008,38(12):1335-1346. 被引量:3

二级参考文献1

共引文献2

同被引文献42

  • 1HOU JianFeng 1,2,WU JianLiang 2,LIU GuiZhen 2 & LIU Bin 2 1 Center for Discrete Mathematics,Fuzhou University,Fuzhou 350002,China,2 School of Mathematics,Shandong University,Jinan 250100,China.Total coloring of embedded graphs of maximum degree at least ten[J].Science China Mathematics,2010,53(8):2127-2133. 被引量:3
  • 2李珍萍,闫桂英.平面图的循环色数及临界性[J].应用数学学报,2006,29(6):972-983. 被引量:1
  • 3Douglas B W. Introduction to graph theory[M]. Delhi.- Pearson Education,2001.
  • 4Vizing V G. On an estimate of the chromatic index of a p-graph[J]. Metody Diskret Analiz, 1964(3) .-25-30.
  • 5Vizing V G. Critical graphs with given chromatic class[J]. Metody Diskret Analiz, 1965 (5) .. 9-17.
  • 6Zhang L M. Every planar with maximum degree 7 is of class l[J]. Graphs and Combinatorics, 2000,16 (4) .. 467-495.
  • 7Sanders D P, Zhao Y. Planar graphs of maximum degree seven are class I [J]. Journal of Combinatorial Theory, Series B,2001,83(2) : 201-212.
  • 8Fabrici I, Madaras T. The structure o f 1-planar graphs[J]. Discrete Mathematics,2007,307(7-8) :854-865.
  • 9Zhang X, Liu G Z. On edge colorings of 1-planar graphs without adjacent triangles[J]. Information Processing Letters, 2012,112 : 138-142.
  • 10Zhang X, Wu J L. On edge colorings of 1-planar graphs[J]. Information Processing Letters, 2011,111(3)..124-128.

引证文献11

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部