摘要
给出奇阶时滞微分方程x(n)(t)+Q(t)f(x(g(t)))=0的一切解均为振动的充分条件和必要条件;当n=1,Q(t)>0,f(x)=xα,α∈(0,1)是两个奇数之比,g(t)=t-τ,τ>0时,方程的一切解均为振动的必要充分条件是∫∞Q(s)ds=∞.
A necessary and sufficient condition was obtained for oscillation of solutions of odd order nonlinear delay differential equations.
关键词
奇阶
振动
非线性时滞微分方程
Odd order Oscillation Nonliner delay differential equation