摘要
采用椭圆型方程生成网格,网格的初始解由代数方法给出,讨论了系数选取对网格疏密调整的影响.变换的椭圆型方程用GaussSeidel 迭代,并辅之以超松驰加速收敛,分析了收敛准则对计算时间、网格光滑性及精度的影响.最后对复杂边界的水库生成了符合要求的曲线网格.
s Elliptic partial differential equations are used to generate a curvilinear mesh.The initial grids are provided by the algebraic method.The effect of the coefficient of the algebraic method on clustering of the mesh is discussed.The inverted partial differential equations are solved by the Gauss Seidel method and the convergence is accelerated with successive over relaxation.The curvilinear grids of reservoirs with complex boundaries are generated.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
1999年第3期92-94,共3页
Journal of Hohai University(Natural Sciences)
关键词
风格生成
椭圆型方程
代数方法
河床演变
grid generation
elliptic partial differential equations
algebraic method