期刊文献+

基于优化成熟度的自适应蚁群优化算法

ADAPTIVE ANT COLONY OPTIMISATION ALGORITHM BASED ON OPTIMISED MATURITY
下载PDF
导出
摘要 分析了蚁群算法局部信息素更新系数与全局信息素更新系数对算法寻优能力与收敛速度的关系,定义平均路径相似度(ATS)来表征寻优过程的成熟程度,并据此自适应调整信息素更新系数,提高算法收敛速度并避免陷入局部最优。经过与典型蚁群算法在多个旅行商问题测试用例上进行比较,表明该算法效果更好。 The relation between updating parameters of local pheromones and global pheromones of ant colony optimisation with regard to search ability and convergence speed of the algorithm is analysed.Average path similarity is defined to represent the maturity degree in optimisation search process,and the updating parameters of pheromones are adaptively adjusted accordingly,the convergence speed is raised as to prevent falling into local optimal as well.The comparison between the algorithm in this paper and the typical ant colony algorithm on the test cases on TSP problem indicate that the former has better effect.
作者 谢延红
出处 《计算机应用与软件》 CSCD 2010年第11期239-241,249,共4页 Computer Applications and Software
基金 德州市项目基金(20090162-8)
关键词 蚁群优化 平均路径相似度 自适应参数控制 Ant colony optimisation Average path similarity Adaptive parameters control
  • 相关文献

参考文献9

  • 1Colorini A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [ C ]. In:Proceedings of the First European Conference on Artificial Life. Paris, France, 1991 : 134 - 142.
  • 2Dorigo M,Maniezzo V,Colomi A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transaction on Systems,Man,and Cybernetics-Part B, 1996,26 ( 1 ) :29 - 41.
  • 3Bullnheimer B, Had R F, Strauss C. A new rank based version of the ant systema computational study[ J]. Central European Journal of operations research and economic, 1999,7 ( 1 ) :25 - 38.
  • 4Stutzle T, Hoos H. MAX-MIN Ant System and Local Search for the Traveling Salesman Problem[ C ]. In:Proceedings of the 1997 IEEE International Conference on Evolutionary Computation. Indianapolis, USA, 1997:309 - 3 ld.
  • 5Gambardella L M, Dorigo M. Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem [ C ]. In : Proceedings of ML- 95, Twelfth International Conference on Machine Learning. Morgan Kaufmann, 1995:252 - 260.
  • 6Dorigo M, Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem [ J ]. IEEE Transaction on Evolutionary Computation, 1997,1 ( 1 ) :53 - 66.
  • 7陈崚,沈洁,秦玲,陈宏建.基于分布均匀度的自适应蚁群算法[J].软件学报,2003,14(8):1379-1387. 被引量:111
  • 8蒋玲艳,张军,钟树鸿.蚁群算法的参数分析[J].计算机工程与应用,2007,43(20):31-36. 被引量:32
  • 9王慧玲,黄挚雄,李志勇.连续区域改进蚁群算法的研究[J].计算机工程与科学,2010,32(3):76-77. 被引量:2

二级参考文献33

  • 1杨志鹏,朱丽莉,袁华.粒子群优化算法研究与发展[J].计算机工程与科学,2007,29(6):61-64. 被引量:12
  • 2Mathur M, Sachin B. Ant Colony Approach to Continuous Function Optimization[J]. Industrial &Engineering Chemistry Research, 2000, 39(10):3814-3822.
  • 3Bitchev G, Parmee I C. The Ant Colony Metaphor for Searching Continuous Design Spaces[C].//Proc of the AISB Workshop on Evolutionary Computation University of Sheffield, 1995.
  • 4Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life,1991:134-142.
  • 5Dorigo M.Optimization,learning and algorithms[D].Department of Electronics,Politecnico diMilano,Italy,1992.
  • 6Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transaction of Systems,Man,and Cybernetics-Part B,1996,26(1):29-41.
  • 7Bonabeau E,Dorigo M,Theraulaz G.Inspiration for optimization from social insect behavior[J].Nature,2000,406(6):39-42.
  • 8Gutjahr W J.A generalized convergence result for the graph based ant system,Technical Report 99-09[R].Dept of Statistics and Decision Support Systems,University of Vienna,Austria,1999.
  • 9Gutjahr W J.A graph-based ant system and its convergence[J].Future Generation Computer Systems,2000,16(8):873-888.
  • 10Dorigo M,Gambardella L M.Ant Colony System:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1 (1):53-66.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部