摘要
证明了如果在图G的闭包中可以找到一个以某确定顶点为端点的生成迹当且仅当在G中可以找到一个以该顶点为端点的生成迹,得出了无爪图中生成迹的存在性在Ryjacek闭包运算下是稳定的,也就是一个无爪图G存在一个生成迹当且仅当图G的闭包cl(G)存在一个生成迹.
In the class of claw-free graphs,the stabilities of lots of properties under the closure defined by Ryjacek have been studied in former papers.In this paper,it is proved that the existence of a spanning trail,in a claw-free graph,is stable under the closure,i.e.,a claw-free graph G has a spanning trail if and only if the closure cl(G) of G has a spanning trail.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2010年第5期459-462,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11071106)
北京市自然科学基金(1102015)资助项目
关键词
无爪图
生成迹
局部连通
闭包
稳定性
claw-free graph
spanning trail
locally connected
closure
stability