摘要
研究了亚纯函数以权1分担两个公共值集的唯一性问题,设S={ω∈C;aωn-n(n-1)ω2+2n(n-2)bω-(n-1)(n-2)b2=0},其中a,b为两个非零复数,且满足abn-2≠2,如果n≥11,f和g以权1分担S,E—(∞,f)=E—(∞,g),则f≡g.
The uniqueness of meromorphic functions sharing two sets with weigted value of one was dealt with.Seting S={ω∈C;aωn-n(n-1)ω2+2n(n-2)bω-(n-1)(n-2)b2=0},a,b being two nonzero numbers and abn-2≠2,if n≥11,f and g share S with weigted value of one,E—(∞,f)=E—(∞,g),then f≡g.
出处
《上海理工大学学报》
CAS
北大核心
2010年第5期433-436,共4页
Journal of University of Shanghai For Science and Technology
关键词
亚纯函数
权分担
公共值集
唯一性
meromorphic functions
weighted sharing
shared set
uniqueness