摘要
研究了潜伏期和染病期均传染的SEIS模型.给出了各类平衡点存在的条件阈值,证明了无病平衡点全局渐近稳定性的条件,并且利用第二加性复合矩阵给出了地方平衡点的存在性和全局渐近稳定性的充分条件.
A kind of SEIS epidemic models with transmission in both latent period and infected period was studied.The threshold for the existence condition of all kinds of equilibriums were identified,the global asymptotic stability of disease-free equilibrium was proved,and the sufficient condition for the existence and the global asymptotic stability of the endemic equilibrium point was also proved by use of the second compound matrix.
出处
《上海理工大学学报》
CAS
北大核心
2010年第5期457-460,共4页
Journal of University of Shanghai For Science and Technology
关键词
流行病模型
平衡点
全局渐近稳定性
复合矩阵
epidemic model
equilibrium
global asymptotic stability
compound matrix