期刊文献+

一种优化的神经网络树异常入侵检测方法 被引量:3

An Optimized Neural Network Tree Based Anomaly Intrusion Detection Method
下载PDF
导出
摘要 本文提出了一种基于优化神经网络树(ONNT)的异常检测方法,在提高异常检测精确率的同时,增强异常检测模型学习结果的可理解性、可解释性。ONNT是一种具有二叉树结构的混合学习模型,二叉树的节点分裂遵循信息增益率准则;其中间节点嵌入了结构简单的感知器神经网络,能够根据当前节点上给定的子样本集和教师信号,选择较小的特征子集构建相对简单的局部决策曲面。本文提出的异常检测方法包括两个方面的性能优化:1)通过优化神经网络树(NNT)的中间节点,降低局部决策曲面的复杂度,从而使中间节点能在可接受的计算代价内表示成低复杂度的布尔函数或规则集,为实现学习结果的可解释性提供基础;2)通过优化学习模型的整体结构,降低所有中间节点的规则析取式的前件复杂度,从而提高学习结果的可理解性。实验的数值结果表明,与基于NNT的异常检测方法相比,本文提出的方法能够以简单的中间节点和相对精简的整体结构提高检测结果的可解释性和可理解性;与其他同类方法相比,基于ONNT的异常检测方法具有较高的检测精确率,且在一定程度上给出了对异常检测具有重大影响的一些特征信息。 This paper dedicates to propose an optimized neural network tree(ONNT) based anomaly detection method that is capable to improve the understandability and interpretability on the detection results of the trained learning model as well as the anomaly detection accuracy.ONNT is a binary-tree-structured hybrid learning model whose interior nodes split according to the criterion of information gain ratio.The simple perceptron neural network embedded in each interior node is trained on the current samples.A limited number of input features are selected on current samples in accordance to instruction signal for the perceptron neural network to build a local decision hyper-plane with low complexity.The proposed anomaly detection method involves two optimization items.Firstly,the complexity of local decision hyper-plane is decreased by optimizing each interior node.The trained neural network in an interior node with simple structure enables the learning result to be interpreted into low complexity Boolean functions or rule set followed by acceptable computation cost,and thereby lay a good basis for the interpretability of the learning results.Secondly,the tree structure of the learning model is optimized,i.e.,the neural network tree(NNT) is pruned to condense the precondition in disjunctive description of all interior nodes,which makes the extracted rule set as understandable as possible.The experimental results compared with those of NNT based detection method suggest that the ONNT based anomaly intrusion detection method allows better understandability and interpretability on the anomaly detection results as a result of simpler structured neural network in interior nodes and reduced complexity of tree structure. The experimental results compared with those obtained by other parallel methods show that the ONNT based anomaly detection method achieves competitive recognition accuracy as well as lower false alarm rate.And what is more,the proposed anomaly detection method presents the information of those features which make greater contribution to the detection result.
出处 《信号处理》 CSCD 北大核心 2010年第11期1663-1669,共7页 Journal of Signal Processing
基金 国家自然科学基金(60702029 60902012) 国家科技重大专项(2009ZX03003-004) 国家973项目(2007CB310603) 东南大学科研启动费(4004001041)资助课题
关键词 异常检测 可理解性和可解释性 优化神经网络树 混合学习模型 Anomaly intrusion detection understandability and interpretability Optimized neural network tree Hybrid learning model
  • 相关文献

参考文献4

二级参考文献38

  • 1Heberlein L, security mon Privacy. Los 296-304 , Dias G V, Levitt K N, et itor [C]//Proc of the 1990 Symp Alamitos, CA: IEEE Computer A network Security and Society, 1990.
  • 2Callegarl C, Vaton S, Paqano M. A new statistical approach to network anomaly detection [C] //Proc of the 2008 Int Syrup on SPECTS. Los Alamitos, CA: IEEE Computer Society, 2008:441-447.
  • 3Fava D, Byers S, Yang. S. Projecting cyberattacks through variable-length Markov models[J]. IEEE Trans Information Forensics and Security, 2008, 3(3) : 359-369.
  • 4Duc D, Matsumoto K, Takishima Y, et al. Two stage incremental working set selection for fast support vector training on large datasets [C] //Proc of the 2008 IEEE Int Conf on RIVF. Los Alamitos, CA: IEEE Computer Society, 2008:221-226.
  • 5Latifur K, Awad M, Thuraisingham B. A new intrusion detection system using support vector machines and hierarchical clustering [J]. The VLDB Journal, 2007, 16 (4): 507-521.
  • 6Yasami Y, Khorsandi S, Mozaffari S, et al. An unsupervised network anomaly detection approach by k means clustering & ID3 algorithm [C]//Proc of the 2008 IEEE Syrup on ISCC. Los Alamitos, CA: IEEE Computer Society, 2008: 398-403.
  • 7Dartique C, Jang H, Zeng W. A new data-mining based approach for network intrusion detection [C] //Proc of the 7th Annual Conf on CNSR. Los Alamitos, CA: IEEE Computer Society, 2009, 372-377.
  • 8Folino G, Pizzuti C, Spezzano G. GP ensemble for distributed intrusion detection systems [C] //Proc of the 3rd Int Conf on Advanced in Pattern Recognition. Berlin: Springer, 2005: 54-62.
  • 9ACM. KDD Cup 1999 Data [OL]. [2001-06-30]. http:// www. sigkdd. org/kddcup/.
  • 10[1]L Portnoy,E Eskin,S J Stolfo.Intrusion detection with unlabeled data using clustering.In:Proc of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001).New York:ACM Press,2001.123-130

共引文献36

同被引文献17

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部