期刊文献+

基于双树复数小波和波原子稀疏图像表示的压缩传感图像重构 被引量:3

Compressed Sensing Image Reconstruction Based on Sparse Image Representation Using Dual-tree Complex wavelet and Wave atoms
下载PDF
导出
摘要 目前用于压缩传感(CS)图像重构的大部分算法都是基于图像在单一基上的稀疏性来实现。但很多图像在两种或多种基上具有稀疏表示,当用一种基进行稀疏图像表示时,往往不能有效捕捉图像的结构特性,导致图像重构质量不高。为此本文提出了一种基于波原子和双树复数小波混合基的图像稀疏表示方法,利用线性Bregman迭代来进行重构的压缩传感算法。该算法在每一次迭代更新后用梯度下降法进行全变差调整,再分别在两种基上执行软阈值处理来减小图像的l_1范数。实验结果表明本文算法有效提高了重构图像的质量。 At present most algorithms applied to compressed sensing image reconstruction are based on the prior of images have sparse representation in single basis.However,many images have sparse representation in more than one basis,when the image is represented by one basis,it can't capture the image structure effectively,and results in the bad quality of recovered image.In this paper, we propose a compressed sensing algorithm based on that images have sparse representation on combined basis of wave atoms and the dual tree complex wavelet transform(DTCWT),making use of the linear Bregman iteration to reconstruct the original image..The algorithm regulate the total variation with the gradient descend method after updating in each iteration,and then performs the soft-thresholding on these two bases respectively to reduce the l_1 norm of the image.The results of experiments show that our algorithm effectively improves the quality of the recovered image.
出处 《信号处理》 CSCD 北大核心 2010年第11期1701-1706,共6页 Journal of Signal Processing
基金 国家自然科学基金(60772079) 河北省自然科学基金(F2010001294)资助课题
关键词 压缩传感 线性Bregman 稀疏表示 双树复数小波 波原子 compressed sensing linearized Bregman sparse representation dual tree complex wavelet transform wave atoms
  • 相关文献

参考文献14

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289-1306.
  • 2Candes E J, M. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2) : 21-30.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2) : 489-509.
  • 4Figueiredo M A T, Nowak R D, S. Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Selected Topics in Signal Processing, 2007, 1 (4) : 586-597.
  • 5Kim S, Koh K, Lustig M, at el. A method for largescale ll-regularized least squares. IEEE Selected Topics in Signal Processing, 2007, 1 (4) : 606-617.
  • 6Donoho D L, Tsaig Y, Drori I, at el. Sparse solution of underdetermined linear equations by stagewise orthogonal matehing pursuit. Teeh. Report, Department of Statistics, Standford University, 2006.
  • 7Yin W, Osher S, Goldfarb D, at el. Bregman iterative algorithms for ll-minimization with applications to compressed sensing. SIAM J. Imaging Science, 2008, 1 ( 1 ) : 143-168.
  • 8Osher S, Mao Y, Dong B, at el. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Tech. Report, Department of Computational and Applied Mathematices, Rice University, 2008.
  • 9Demanet L, Ying L. Wave atoms and sparsity of oscillatory patterns. Applied and Computational Analysis, 2007, 23 ( 3 ) :368-387.
  • 10Selesnick I W, Baraniuk R G, Kingsbury N G. The dual tree complex wavelet transform. IEEE Signal Processing Magazine, 2005, 22(6): 123-151.

同被引文献34

  • 1包乾宗,高静怀,陈文超.面波压制的Ridgelet域方法[J].地球物理学报,2007,50(4):1210-1215. 被引量:31
  • 2DONOHO D L. De-noising hv soft thresholding[ J]. IEEE Trans on Information Theory, 1995,41 (3) :613-627.
  • 3CATTES F, I,IONS P, MOREL J,et al. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal on Nu- merical Analysis, 1992,29( 1 ) :182-193.
  • 4MA Jin-wei. Characterization of trxtural surfaces using wave atoms [ J ]. Applied Physics Letters ,200? ,90 ( 26 ) :264101-264103.
  • 5COIFMAN R R, DONOHO D 1, Translation in,.ariant denoising [ C ]//Lecture Notes in Statistics, Vol 103. New York: Springer-Ver- lag, 1995 : 125-150.
  • 6CANDES E J, DONOHO D L. New tight frames of curvelets and opti- mal representations of objects with C2 singularities[ J ]. Communica- tions on Pure and Applied Mathematics,2004,57(2) :219-266.
  • 7DEMANET L, Y1NG 1, X. Wave atoms and sparsity of oscillator7 pat- terns[ J ]. Applied and Computational Harmonic Analysis,2007, 23(3 ) :368-387.
  • 8TOMASI C, MANDUCHI R. Bilateral filtering for gray and color ima- ges[ C]// Proc of IEEE ICCV. 1998:839-846.
  • 9BARASH D. A fundamental relationship between bilateral fihering, adaptive smoothing, and tile nonlinear diffusion equation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24 (6) :844-847.
  • 10BUADRS A, COl J, B, MOREI, J M. A review of image denoising al- gorithms with a new one[J]. SlAM Multiscale Modeling and Simu-lation ,2005,4(2 ) :490-530.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部