期刊文献+

重力对功能陶瓷材料压制过程影响的离散元模拟 被引量:4

Discrete Element Method Modeling of the Influence of Gravity During Functional Ceramics Material Compaction Process
下载PDF
导出
摘要 采用离散元法动态模拟了功能陶瓷材料的压制过程,分别分析了重力与微重力情况下,成型后素坯的颗粒分布、应力以及孔隙率等情况.结果显示:在重力情况下,不同粒径的颗粒分布不均匀,小粒径颗粒很大一部分集中在上冲附近,而微重力情况下,颗粒不均匀性明显减小;与此同时,与微重力情况相比,重力情况下坯体的应力分布梯度较大,靠近上冲模及下冲模处应力比中间部位应力大,而孔隙率分布梯度也较大. Compaction process of the functional ceramic materials were dynamically simulated by discrete element method(DEM),and the particles distribution,stress and porosity of the green compact under the actions of gravity and microgravity were also analyzed.The results showed that under the action of gravity,the distribution of different size particles was inhomogeneous,a substantial part of small size particles were found concentrated near the upper punch,while under the action of microgravity,the heterogeneity of particles was significantly reduced.Compared with microgravity condition,the distribution of stress gradients was larger under the gravity condition,and the stress near the upper and low punches was lager than that at the middle region,and the distribution gradient of the porosity was also larger.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2010年第10期1071-1075,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(50875224) 上海市科委重点基金(09JC1414802) 教育部新世纪优秀人才支持计划(NCET06-0708)~~
关键词 离散元法 功能陶瓷 梯度 颗粒分布 DEM functional ceramics gradient particles distribution
  • 相关文献

参考文献12

  • 1孟正华,黄尚宇.压制方式对锆钛酸铅压电陶瓷密度及性能影响的研究[J].粉末冶金技术,2008,26(1):49-52. 被引量:3
  • 2陈诺夫.微重力环境材料科学实验[J].自然杂志,2007,29(6):335-337. 被引量:4
  • 3赵然,周静,魏长松,陈文.成型工艺对xPMS-(1-x)PZN陶瓷性能的影响[J].四川大学学报(自然科学版),2005,42(S1):416-420. 被引量:2
  • 4董林峰,李从心.金属粉末成形过程的裂纹预测[J].上海交通大学学报,2001,35(1):90-93. 被引量:4
  • 5Martin C L,,Bouvard D,Shima S,et al.Study of particle rear-rangement during powder compaction by the discrete element method. Journal of the Mechanics and Physics of Solids . 2003
  • 6Frenning G-ran.An efficient finite/discrete element procedure for simulating compression of3D particle assemblies. Computer Methods . 2008
  • 7Haware RV,Tho I,Bauer-Brandl A.Application of multivariate methods to compression behavior evaluation of directly compressible materials. European Journal of Pharmaceutics and Bio-pharmaceutics . 2009
  • 8Sonnergaard,J. M.Investigation of a new mathematical model for compression of pharmaceutical powders. European Journal of Pharmaceutical Sciences . 2001
  • 9Wu CY,,Hancock BC,Mills A,et al.Numerical and experimental investigation of capping mecha-nisms during pharmaceutical tablet compaction. Powder Technology . 2008
  • 10Henderson R J,Chandler HW,et al.Finite Element Modelling of Cold Isostatic Pressing. Journal ofEuropean Ceramic Society . 2000

二级参考文献28

  • 1汪俊,学位论文,1999年
  • 2Park S J,Int J Mech Sci,1999年,41卷,2期,121页
  • 3Han H N,Powder Metall,1996年,37卷,2期,140页
  • 4Lee D N,Powder Metall,1992年,35卷,4期,275页
  • 5黄尚宇,陈堰波,李友成,吴彦春,孟正华.功能陶瓷低电压放电压制成形方法.CN200410013314.1,2005.
  • 6MIL' VIDXKII M G, et al. Prostomolotov, semiconductors on the way to space technology[J]. J of Journals, 1998, 2( 1 ): 6-13.
  • 7CHEN N F, ZHONG X R , LIN L Y. Comparison of field effect transistor characteristics between space-grown and earthgrown gallium arsenide single crystal substrates[J]. Appl Phys Lett, 2001, 78(4): 478-479.
  • 8Williams J D. Explosive Compaction of RSR Aluminum Powder at Queen's University, Belfast,Powder Metallurgy, 1986, 29(2) :91.
  • 9Clyens S, Johnson W. The dynamic compaction of powdered materials. Material Science and Engineering, 1977,30:121.
  • 10Davies T J, AI - Hassani S T S. Advances in Materials Technology in the America's. New York: AS/VIE, 1980:147.

共引文献9

同被引文献42

  • 1刘伯威,樊毅,张金生,潘进.MoSi_2复合材料断裂韧性的测量及评价[J].粉末冶金材料科学与工程,2001,6(4):266-271. 被引量:4
  • 2布赖恩·哈里斯.工程复合材料[M].第2版.北京:化学工业出版社,2004:5.
  • 3Li Dianshen, Fang Daining, et al. Finite element analysis of mechanical properties of 3D four-directional rectangular brai- ded composites-Part 2: Validation of the 3D finite element model[J]. Appl Compos Mater,2010,17(4):389.
  • 4Yang D M, Yong S, Ye J Q, et al. Discrete element mode: ling of the microbond test of fiber reinforced composite[J]. Comput Mater 8ci,2010,49(2) :253.
  • 5Pizette P, Martin C I., Delette G, et al. Compaction of ag- gregated ceramic powders from contact laws to fracture and yield surfaces [J]. Powder Techn,2010,198(2):240.
  • 6Tan Yuanqiang, Yang Dongmin, Yong Sheng. Discrete ele- ment method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC [J]. J Eur Ceram Soc, 2009,29(6) : 1029.
  • 7Potyondy D O, Cundall P A. A bonded-particle model for rock [J]. Int J Rock Mech Min Sci,2004,41(8): 1329.
  • 8Potyondy D O. Simulating stress corrosion with a bonded- particle model for rock [J]. Int J Rock Mech Min Sci,2007, 44(5) : 677.
  • 9Hyunwook Kim, Buttlar William G. Discrete fracture mo- deling of asphalt concrete [J]. Int J Solids Struct, 2009,46 (13):2593.
  • 10Tran V T, Donz6 F V, Marin P. A discrete element model of concrete under high triaxial loading[J]. Cem Coner Com- pos, 2011,33(9) : 936.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部