期刊文献+

一种柔性簇状卫星动力学并行仿真方法

A parallel simulation method of flexible clustered satellite dynamics
下载PDF
导出
摘要 具有柔性中心体及多个柔性附件的簇状卫星动力学仿真需使用大量模态数据进行动力学计算,计算量大。经典方法通过模态截断及动力学方程化简进行建模,难以满足高精度仿真需要。提出将端口方程形式的柔性附件动力学方程与中心体柔性动力学方程直接组集,设计并行仿真算法,提高仿真速度。所提出算法计算复杂度随卫星柔性部件数量增长具有对数增长规律。仿真结果证明这种算法并行效率随模型中柔性附件数量及柔性模态数量增长而提高,适用于柔性簇状卫星并行仿真。 Dynamic simulation of clustered satellite with flexible center body and flexible appendages needs performing dynamic calculations with large modal sets which lead to high computation cost and low efficiency.Classical modeling methods deal with this problem by equation simplification and modal reduction which make it hard to satisfy the need of high precision simulation.An algorithm which assembles port equations of flexible appendages and dynamic equation of flexible center body directly is proposed to enable parallel simulation and boost simulation speed.Computational complexity of the proposed algorithm is proved to follow a logarithmic increase with respect to the number of flexible appendages.The simulation results show that parallel simulation efficiency grows with the increase of mode number used in flexible body model and the number of flexible appendages,which has made the algorithm suitable for the parallel simulation of flexible clustered satellite.
作者 朱雨童 汤亮
出处 《中国体视学与图像分析》 2010年第3期313-318,共6页 Chinese Journal of Stereology and Image Analysis
关键词 仿真 并行 柔性 卫星 simulation parallelism flexible satellite
  • 相关文献

参考文献11

  • 1王巧,洪嘉振,尤超蓝.簇状卫星姿态控制方程的通用建模方法[J].宇航学报,2004,25(4):389-392. 被引量:4
  • 2Tadikonda S S K. Articulated, flexible muhibody dynamics modeling: geostationary operational environmental satellite - 8 case study [ J]. Journal of Guidance, Control, and Dynamics, 1997,20(2) :276 - 283.
  • 3Lee Y J, Subramaniaml M, Venugopalt R,et al. Integrated system tool for flexible muhibody dynamics and Control System Analysis [ R ]. Portland : AIAA, 1999.
  • 4常忠正,洪嘉振.基于MPI的柔性多体系统动力学并行计算[J].宇航学报,2006,27(1):89-93. 被引量:4
  • 5Featherstone R. A divide-and-conquer articulated-body algorithm for parallel O( log(n) ) calculation of rigid-body dynamics. Part 1 : Basic algorithm [J].International Journal of Robotics Research, 1999,18 (9) : 867 - 875.
  • 6Featherstone R. A divide-and-conquer articulated-body algorithm for parallel 0 ( log (n) ) calculation of rigid - body dynamics. Part 2: Trees, loops, and accuracy [J]. International Journal of Robotics Research, 1999,18 ( 9 ) : 876 - 892.
  • 7Anderson K S, Duan Shanzhong. Highly parallelizable low-order dynamics simulation algorithm for multi-rigidbody systems[J]. Journal of Guidance, Control and Dynamics, 2000,23 ( 2 ) :455 - 363.
  • 8Critchley J H, Anderson K S. A parallel logarithmic order algorithm for general multibody system dynamics [ J ]. Muhibody System Dynamics ,2004,12:75 - 93.
  • 9Banerjee A K. Contributions of muhibody dynamics to space flight:a brief review[ J]. Journal of Guidance, Control, and Dynamics,2006,26 ( 3 ) : 385 - 394.
  • 10Mukherjee R M, Anderson K S. A logarithmic complexity divide-and-conquer algorithm for laulti-flexible articulated body dynamics[J]. Journal of Computational and Nonlinear Dynamics ,2007,2 : 10 - 21.

二级参考文献7

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部