摘要
Combining the radial point interpolation method (RPIM), the dual reciprocity method (DRM) and the hybrid boundary node method (HBNM), a dual reciprocity hybrid radial boundary node method (DHRBNM) is proposed for linear elasticity. Compared to DHBNM, RPIM is exploited to replace the moving least square (MLS) in DHRBNM, and it gets rid of the deficiency of MLS approximation, in which shape functions lack the delta function property, the boundary condition can not be applied easily and directly and it's computational expense is high. Besides, different approximate functions are discussed in DRM to get the interpolation property, in which the accuracy and efficiency for different basis functions are compared. Then RPIM is also applied in DRM to replace the conical function interpolation, which can greatly improve the accuracy of the present method. To demonstrate the effectiveness of the present method, DHBNM is applied for comparison, and some numerical examples of 2-D elasticity problems show that the present method is much more effective than DHBNM.
Combining the radial point interpolation method (RPIM), the dual reciprocity method (DRM) and the hybrid boundary node method (HBNM), a dual reciprocity hybrid radial boundary node method (DHRBNM) is proposed for linear elasticity. Compared to DHBNM, RPIM is exploited to replace the moving least square (MLS) in DHRBNM, and it gets rid of the deficiency of MLS approximation, in which shape functions lack the delta function property, the boundary condition can not be applied easily and directly and it's computational expense is high. Besides, different approximate functions are discussed in DRM to get the interpolation property, in which the accuracy and efficiency for different basis functions are compared. Then RPIM is also applied in DRM to replace the conical function interpolation, which can greatly improve the accuracy of the present method. To demonstrate the effectiveness of the present method, DHBNM is applied for comparison, and some numerical examples of 2-D elasticity problems show that the present method is much more effective than DHBNM.
基金
Project supported by the National Basic Research Program of China (No. 2010CB732006)
the CAS/SAFEA International Partnership Program for Creative Research Teams (No. KZCX2-YW-T12)
the National Natural Science Foundation of China (No. 11002154)