期刊文献+

任务自适应神经网络结构研究 被引量:5

A Study of Task Based Strategies for Adaptively Constructive Neural Networks
下载PDF
导出
摘要 在基于任务自适应的统一框架下讨论了神经网络的生成方案,重点研究了两类典型而适用的神经网络构筑算法,即基于隐节点自适应增长的神经网络结构算法和基于子网自适应增长的神经网络结构算法。还结合所提出的层次式多网络模型,对基于任务的神经网络的自适应结构方案、发展前景与存在的问题作了详细的比较研究。 We investigated the strategies for optimizing neural networks under the unified frame based on task, focused for constructive neural networks on two typical and practical schemes, which are adaptively constructive neural networks by growing hiddens or layers of hidden nodes and by growing subnet. With the Layer Multinet Model proposed by our research group, we investigated task based algorithms for constructive neural networks, their perspective, strength and weakness.
出处 《核电子学与探测技术》 CAS CSCD 北大核心 1999年第3期164-168,共5页 Nuclear Electronics & Detection Technology
基金 国家自然科学基金
关键词 任务自适应 算法 层次式多网络 神经网络结构 Task based Projection pursuit Cascade correlation Layer Multinet Model
  • 相关文献

参考文献3

同被引文献34

  • 1王继成,蔡义发,吕维雪.一种自动生成神经网络结构的新方法[J].自动化学报,1996,22(1):19-25. 被引量:13
  • 2[1]Russell R.Pruning Algorithms-A survey.IEEE Trans.on Neural Networks,1993,(4):740~747.
  • 3[2]Lehtokangas M.Modelling with constructive backpropagation.Neural Networks,1999,(12):707~716.
  • 4[3]Chow Mo-yuen,Teeter Jason.Analysis of weight decay as a methodology of reducing three-layer feedforward artificial neural networks for classification problems.Proc.of IEEE International Conference on Neural Networks,1994,1:600~605.
  • 5[5]Dan Foresee F.,Hagan M.T..Gauss-Newton approximation to Bayesian learning.Proc.of International Conference on Neural Networks,1997,3:1930~1935.
  • 6陈荣,徐用懋,兰鸿森.多层前向网络的研究——遗传BP算法和结构优化策略[J].自动化学报,1997,23(1):43-49. 被引量:51
  • 7Fahlman S E,Lebiere C. The cascade-correlation learning architecture. in Advances in Neural Information Processing Systems 2.D.S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann,1990. 524~532
  • 8Hwang J,et al. Regression modeling in back-propagation and projection pursuit learning. IEEE Trans. Neural Networks, 1994,5(5):1~24
  • 9Smieja F. The pandemonium system of reflective agents. IEEE Trans. Neural Networks, 1996, 7(1): 97~ 106
  • 10Ji Chuanyi, Ma Sheng. Combination of Weak Classifiers. IEEE Trans. Neural Networks, 1997, 8(1): 32~42

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部