摘要
在基于任务自适应的统一框架下讨论了神经网络的生成方案,重点研究了两类典型而适用的神经网络构筑算法,即基于隐节点自适应增长的神经网络结构算法和基于子网自适应增长的神经网络结构算法。还结合所提出的层次式多网络模型,对基于任务的神经网络的自适应结构方案、发展前景与存在的问题作了详细的比较研究。
We investigated the strategies for optimizing neural networks under the unified frame based on task, focused for constructive neural networks on two typical and practical schemes, which are adaptively constructive neural networks by growing hiddens or layers of hidden nodes and by growing subnet. With the Layer Multinet Model proposed by our research group, we investigated task based algorithms for constructive neural networks, their perspective, strength and weakness.
出处
《核电子学与探测技术》
CAS
CSCD
北大核心
1999年第3期164-168,共5页
Nuclear Electronics & Detection Technology
基金
国家自然科学基金
关键词
任务自适应
算法
层次式多网络
神经网络结构
Task based Projection pursuit Cascade correlation Layer Multinet Model