期刊文献+

新型粒子滤波算法在传递对准系统中的应用 被引量:1

New particle filtering algorithm and its application in transfer alignment systems
原文传递
导出
摘要 为了提高传递对准非线性系统状态估计中粒子滤波算法的估计精度,提出了一类应用中心差分滤波(CDDF)算法产生粒子建议分布的中心差分粒子滤波(CDDPF)算法.该算法应用Stirling插值公式逼近非线性函数,用Cholesky分解确保误差方差阵正定性,获得滤波稳定数值计算;应用CDDPF算法生成粒子建议分布,能够融合最新量测信息;最后应用新算法对传递对准系统模型进行最优滤波,CDDPF算法数值计算稳定性优于UKPF算法,状态变量估计精度得到明显提高. In order to improve the estimated precision of particle filtering algorithm in transfer alignment(TA)nonlinear systems with large initial misalignment angles,the central divided difference particle filtering(CDDPF)algorithm is developed,which makes use of the central divided difference filtering(CDDF)algorithm to generate the particles set of the proposal distribution.It uses Stirling interpolation to approximate nonlinear system equations and/or measurement equations which can be easy to implement,and the Cholesky factorization of prediction error variance matrix to employe to ensure the positive definiteness of the estimation error variance matrix.These particles generated can integrate the latest measurement information into system state transition density.Finally the experiments on TA nonlinear system are conducted with the CDDPF algorithm.The simulation results indicate that,comparing to UKPF(unscented Kalman particle filtering)algorithm,the new algorithm has better numerical stability and its fstimation precision is improved obviously.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期76-79,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60674087)
关键词 传递对准 无迹粒子滤波 中心差分滤波 粒子滤波算法 中心差分粒子滤波 transfer alignment; unsented transformation particle filtering algorithm; central divided difference filtering; particle filtering; central divided difference particle filtering
  • 相关文献

参考文献10

  • 1Sanjeev A, Simon M, Neil G, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian traeking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10:197-208.
  • 4Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing data problems[J]. Journal of American Statistical Association, 1994, 89 (425) : 278-288.
  • 5Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems[J]. Journal of the American Statistical Association, 1998, 93(5): 1 032-1 044.
  • 6Lehn-Schiler T, Erdogmus D, Principe J C. Parzen particle filters[C]//Proceedings of IEEE Inernational Canference on Acoustics, Speech, and Signal Processing. Montreal: IEEE, 2004: 781-784.
  • 7Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94(2): 590-599.
  • 8Rudolph V M. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Partland: Department of Electrical & Computer Engineering, Oregon Health & Science University, 2004.
  • 9Magnus N, Niels K P, Ole R. Advances in derivative-free state estimation for nonlinear systems, IMM-REP-1998-15 [R]. Copenhagen.. Technology University of Denmark, 2000.
  • 10丁国强,周卫东,郝燕玲.传递对准误差模型及其QCDKF算法[J].华中科技大学学报(自然科学版),2010,38(8):89-94. 被引量:7

二级参考文献10

  • 1Chung D Y, Lee J G. Comparison of SDINS in-flight alignment using equivalent error models[J].IEEE Transactions on Aerospace and Electronic Systems, 1999, 35 (3): 1 046-1 054.
  • 2Chung D Y, Lee J G. Strap-down INS error model for multi-position alignment [J].IEEE Transactions on Aerospace and Electronic Systems, 1996, 32 (4) : 1 362-1 366.
  • 3Crassidis J L, Markley F attitude estimat ance, Control and Dynamics, Unscented filtering for [J]. Journal of Guid 2003, 26(4): 536-542.
  • 4Choukroun D, Itzhaek B, Oshman Y. Novel quaternion Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42 (1) : 174- 190.
  • 5Markley F L, Cheng Y, Crassidis J L, et al. Averaging quaternions[J].Journal of Guidance, Control, and Dynamics, 2007, 30(4): 1 193-1 197.
  • 6Magnus N, Poulsen N K, Ravn O. Advances in derivative-free state estimation for nonlinear systems, Technology Report IMM-REP-1998-15 [R]. Copen hagen: Technology University of Denmark, 2000.
  • 7Oshman Y, Carmi A. Attitude estimation from vector observations using genetic-algorithm-embedded qua ternion particle filter[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 879-891.
  • 8万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1999.
  • 9熊芝兰.惯性导航系统大失准角情况下的传递对准技术研究[D].哈尔滨:哈尔滨工程大学自动化学院,2007.
  • 10莫以为,萧德云.基于粒子滤波算法的混合系统监测与诊断(英文)[J].自动化学报,2003,29(5):641-648. 被引量:34

共引文献298

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部