期刊文献+

一种改进的加权序列模式挖掘算法

An Improved Weighted Sequential Pattern Mining Algorithm
下载PDF
导出
摘要 在加权序列模式挖掘中,基于候选码生成-测试方法的MWSP是目前应用性最好的算法之一,然而在挖掘过程中容易出现候选组合爆炸的情况,为此文章提出了一种高效的加权序列模式挖掘算法(PWSM)。PWSM算法引入k-最小加权支持数概念并利用前缀投影数据库原理有效地避免了候选组合爆炸的发生,并且在挖掘的过程中充分利用最小加权支持数,再次对算法进行优化。实验表明,该算法较MWSP算法能更加有效地从序列数据库中挖掘加权序列模式。 In the weighted sequential pattern mining,the algorithm MWSP is one of the best algorithms,but during the mining process,it will easily generate the situation of candidate combinatorial explosion because of basing on the candidate generation-and-test approach,therefore,this paper presents an efficient algorithm PWSM,which introduces the concept of K-minimum weighted support,utilizes the principle of prefix projection database to avoid the occurrence of candidate combinatorial explosion,and takes full advantage of the minimum weighted support to optimize the algorithm.The experimental results show that the algorithm PWSM is more effective than the algorithm MWSP on mining weighted sequential patterns from the sequence database.
出处 《计算机与数字工程》 2010年第11期4-9,共6页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61070047 61070133 61003180) 江苏省自然科学基金项目(编号:BK2008206 BK21010311) 江苏省教育厅自然科学基金项目(编号:08KJB520012 09KJB20013)资助
关键词 数据挖掘 加权序列模式 加权支持数 data mining weighted sequential pattern weighted support
  • 相关文献

参考文献7

  • 1R. Agrawal, R. Srikant. Mining Sequential Pattern [C]//Pro. of the 11st Int. Conf. on Data Engineering, Taipei, 1995,3: 3- 14.
  • 2Yun U, Leggett J J. WSpan: Weighted sequential pattern mining in large sequence databases[C]//3^rd International IEEE Conference Intelligent Systems, UK, IEEE Press,2006 : 512-517.
  • 3魏伟杰,张明卫,张斌,王波.基于最小加权支持的加权序列模式挖掘算法[J].吉林大学学报(工学版),2008,38(S2):178-183. 被引量:2
  • 4耿汝年,董祥军,须文波.一种有效的基于图遍历的加权序列模式挖掘算法[J].控制与决策,2009,24(5):663-669. 被引量:4
  • 5Pei J, Han J, Asi B M, et al. Mining sequential patterns by pattern-growth: The prefixspan approach[J]. IEEE Trans on Knowledge and Data Engineering, 2004,16(11): 1424- 1440.
  • 6欧阳为民,郑诚,蔡庆生.数据库中加权关联规则的发现[J].软件学报,2001,12(4):612-619. 被引量:96
  • 7Yun Li, Yunhao Yuan, et al. Mining Self-adaptive Sequence Patterns Based on Sequence Fuzzy Concept Lattice[C]//Proceedings of International Symposium on Intelligent Information Technology Application ( IITA 2008), Shanghai, China, December 21-22,2008:167- 171.

二级参考文献19

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部