期刊文献+

基于粒子群优化的混合模糊双矩阵对策求解 被引量:3

Solution of Mixed Fuzzy Bimatrix Games Based on Particle Swarm Optimization
下载PDF
导出
摘要 针对具有模糊策略集与模糊支付值的不确定性冲突环境,建立了混合模糊双矩阵对策模型。在假定模糊支付值为三角模糊数的情形下,采用了基于单个截集的模糊数线性排序函数,将模型清晰化后转化为双矩阵对策,并应用粒子群优化算法求解。最后,给出一个军事例子说明了模型的实用有效性和粒子群优化算法的高效性。 Aiming at the uncertain conflict situations with fuzzy strategy sets and fuzzy payoffs,the model of mixed fuzzy bimatrix games is established.While fuzzy payoffs are triangular fuzzy numbers,the model of fuzzy bimatrix games can be transformed into clear bimatrix game by using linear ranking function of fuzzy numbers based on one cut set,and a PSO algorithm is presented for solving the model.Finally,a military example is given to illustrate the practicality and effectivity of the proposed model and the high efficiency of the proposed PSO algorithm.
出处 《计算机与数字工程》 2010年第11期13-16,共4页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:60774029)资助
关键词 混合模糊双矩阵对策 模糊策略集 模糊支付值 三角模糊数 粒子群优化 mixed fuzzy bimatrix game fuzzy strategy sets fuzzy payoffs triangular fuzzy numbers PSO algorithm
  • 相关文献

参考文献7

二级参考文献42

  • 1胡应平.应用于战术分析的模糊矩阵对策[J].数学的实践与认识,1994,24(1):26-32. 被引量:7
  • 2张肃,曹泽阳,王颖龙.防空系统对抗ARM攻击的对策分析[J].战术导弹技术,2005(1):29-33. 被引量:4
  • 3郭耀煌,徐扬.不确定性矩阵对策解的确定[J].系统工程学报,1995,10(4):63-72. 被引量:3
  • 4张子方,黄正良,于朝江.模糊矩阵对策[J].模糊系统与数学,1996,10(2):55-61. 被引量:15
  • 5[6]SHAHABZIAN E,BLODGETT D,LABBE P.The Extended OODA Model for Data Fusion Systems[J].Proceeding of Fusion,2001,10(1):19-25.
  • 6[7]YAGER R R.Applications and Extensions of OWA Aggregations[J].International Journal of Man-Machine Studies,1992,37(2):103-132.
  • 7Nair K G,Tanjith G.Solution of 3×3 Games Using Graphical Method [J].European Journal of Operational Research,1999,112:472-478.
  • 8Lemke C,Howson J.Equilibrium Points of Bimatrix Games [J].Journal of Society of Industrial and Applied Mathematics,1964,12:413-423.
  • 9Herings P J J,Peeters R J A P.A Differentiable Homotopy to Compute Nash Equilibriua of n-Person Games [J].Economic Theory,2001,18:159-186.[4] Maynard S J,Price G.The Logic of Animal Conflict [J].Nature,1973,246:15-18.
  • 10Maynard S J.Evolution and the Theory of Games [M].Cambridge,United Kingdom:Cambridge University Press,1982.

共引文献451

同被引文献23

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部