期刊文献+

随机状态空间系统的梯度优化辨识

System identification of stochastic state-space systems by gradient optimization search
下载PDF
导出
摘要 提出了随机状态空间系统参数的梯度优化辨识方法。通过极小化输出预报误差而获得系统的参数估计。提出了动态选择雅可比矩阵奇异值比率确定参数搜索方向的方法,用以解决因雅可比矩阵的线性相关性引起的算法失效问题。给出了融合参数局部逼近性能信息的辨识算法,并得到了算法收敛速度的解析表达式。数值仿真实验的结果说明了所提出方法的有效性。 System identification based on gradient optimization search is proposed for parameter estimation of stochastic state-space systems.The system parameters are estimated by optimizing an output-error cost function.Moreover,the search direction is determined by dynamic singular ration of Jacobian matrix for the purpose of solving the algorithm failure caused by the rank-deficient Jacobians.In addition, identification algorithm by considering the local linear approximation of the output error is presented.Furthermore,the analytic expression of the convergence rate of the identification algorithm is also given. Finally,the effectiveness of the proposed method is illustrated by numerical simulation.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第33期21-24,35,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60870010 No.60864004 No.60904049 国家高技术研究发展计划(863)No.2008AA04Z129~~
关键词 系统辨识 随机状态空间系统 预报误差 system identification stochastic state-space systems prediction output error
  • 相关文献

参考文献10

  • 1邱晓华,陈偕雄.随机自治状态空间模型的正交梯度辨识[J].浙江大学学报(理学版),2009,36(2):170-174. 被引量:1
  • 2Van Overschee P,De Moor B.Subspace algolrithms for the stochastic identification problem[J].Automatica,1993,29(3):649-660.
  • 3Goethals I,Van Gestel T,Suykens J,et al.Identification of positive real model models in subspace identification by using regularization[J].IEEE Transactions on Automatic Control,2003,48(10):1843-1847.
  • 4Dahlén A,Lindquist A,Mari J.Experiment evidence showing that stochastic subspace identification methods may fail[J].Systems & Control Letters,1998,34(5):303-312.
  • 5衷路生,宋执环.基于正交梯度搜索的动态系统递阶优化辨识[J].自动化学报,2008,34(6):711-715. 被引量:13
  • 6Ober R J.Balanced parametrization of classes of linear systems[J].SIAM Jonrnal on Control and Optimization,1991,29(6):1251-1287.
  • 7Mckelvey T,Helmersson A,Ribarits T.Data driven local coordinates for multivariable linear systems and their application to system identification[J].Automatica,2004,40(9):1629-1635.
  • 8Ribarits T,Deistler M,Hanzon B.An analysis of separable least squares data driven local coordinates for maximum likelihood estimation of linear systems[J].Automatica,2005,41(3):531-544.
  • 9Dennis J E,Schnabel R B.Numerical methods for unconstrained optimization and nonlinear eqnations[M].Englewood Cliffs,NJ:Prentice-Hall,1983.
  • 10Wills A,Nioness B.On gradient-based search for multivariable system estimates[J].IEEE Transactions on Automatic Control,2008,53(1):298-306.

二级参考文献26

  • 1GOETHAI.S I, VAN GESTEL T, SUYKENS J, et al. Identification of positive real model models in subspace identification by using regularization [J]. IEEE Transactions on Automatic Control, 2003, 48 (10) :1843-1847.
  • 2VAN OVERSCHEE P, DE MOOR B. Subspace algorithms for the stochastic identification problem [J]. Automatica,1993,29(3):649-660.
  • 3DAHLEN A, LINDQUIST A, MARl J. Experiment evidence showing that stochastic subspace identification methods may fail[J]. Systems & Control Letters, 1998,34 (5) :303-312.
  • 4OBER R J. Balanced parametrization of classes of linear systems [J]. SIAM Journal on Control and Optimization, 1991,29(6) : 1251-1287.
  • 5RIBARITS T, DEISTLER M, HANZON B. An analysis of separable least squares data driven local coordinates for maximum likelihood estimation of linear systems[J]. Automatica, 2005,41 ( 3 ) : 531-544.
  • 6GIBSON S, NINNESS B. Robust maximum-likelihood estimation of multivariable dynamic systems [J]. Automatica,2004,41(10) :1667-1682.
  • 7MCKELVEY T, HELMERSSON A, RIBARITS T. Data driven local coordinates for multivariable linear systems and their application to system identification [J]. Automatica,2004,40(9) :1629-1635.
  • 8BERGBOER N H, VERDULT V, VERHAEGEN M H. An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search[C]//Proceedings of the 41^st IEEE CDC, Las Vegas,2002:616-621.
  • 9Favored W, De Moor B, Van Overschee P. Subspace state space system identification for industrial processes. Journal of Process Control, 2000, 10(2): 149-155
  • 10Dahlen A, Lindquist A, Mari J. Experiment evidence showing that stochastic subspace identification methods may fail. Systems and Control Letters, 1998, 34(5): 303-312

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部