期刊文献+

基于排挤遗传算法的入侵检测方法 被引量:1

Intrusion detection method based on crowding genetic algorithm
下载PDF
导出
摘要 传统遗传算法在入侵检测系统中构造的规则单一,导致检测率低,为了构造更加精确和完备的入侵规则,提出了一种基于确定性排挤遗传的规则构造算法,该算法使用确定性排挤来产生下一代种群,能够有效保持种群多样性,获得全部最优解。给出了算法的步骤和仿真,以网络数据集KDDCup99为对象,详细分析了利用该算法来生成入侵规则的具体实现过程,对染色体编码和适应度函数进行了设计和实现。最后通过实验证明了此算法的有效性,可以较好地获得入侵检测规则。 The rules produced by the traditional genetic algorithm for intrusion detection system are too single and lead to the low detection rate.In order to get precise and complete intrusion detection rules,this paper puts forward a method based on deterministic crowding genetic algorithm.It can get the whole global optimal solutions and keep the diversity of the popu- lation.The basic steps and case simulation of this algorithm are presented.The concrete method of creating the intrusion detection rules using this algorithm is analyzed in detail using the KDDCup99 as the testing data set.The chromosome code and fitness function are proposed.The experiments show that the algorithm is efficient and can get better intrusion detection rules.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第33期91-93,97,共4页 Computer Engineering and Applications
关键词 遗传算法 确定性排挤 入侵检测 KDDCup99 genetic algorithm deterministic crowding intrusion detection KDDCup99
  • 相关文献

参考文献8

二级参考文献48

  • 1蔡罡,冯辉宗.基于协议分析状态机的入侵检测系统[J].重庆邮电学院学报(自然科学版),2005,17(1):97-101. 被引量:4
  • 2陈龙,王国胤.计算机取证技术综述[J].重庆邮电学院学报(自然科学版),2005,17(6):736-741. 被引量:48
  • 3席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:347
  • 4汪立东.操作系统安全评估与审计增强[D].哈尔滨:哈尔滨工业大学,2002.
  • 5MCHUGH J. Intrusion and intrusion detection [ J ]. Digital Object Identifier,2001, 1 : 14 -35.
  • 6LINDQVIST U, PORRAS P A. Detecting computer and network misuse through the production - based expert system toolset ( P - BEST) [A]. Proceedings of the 1999 IEEE symposium on security and privacy [ C ]. Oakland,1999.
  • 7CANNADY J. Artificial neural network for misuse detection[ A ]. Proceedings of the 1998 national information systems security conference ( NISSC96)/[C]. Arlington,1998.
  • 8AXELSSON S, LINDQVIST U, GUSTAFSON U. An approach to UNIX security logging[A].Proceedings of the 21st national information systems security conference[C]. Crystal City, USA, 1998.
  • 9E Eskin.Anomaly detection over noisy data using learned probability distributions[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.255-262.
  • 10T Lane,C Brodley.Temporal sequence learning and data reduction for anomaly detection[J].ACM Trans Info System Security,1999,2:295-331.

共引文献71

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部