期刊文献+

基于频繁访问页组的路径聚类研究 被引量:3

Research of path clustering based on frequently visited page groups
下载PDF
导出
摘要 基于用户会话的页面聚类算法旨在发现用户在浏览过程中频繁访问的页组,为站点管理员优化站点结构提供有力的依据。将介绍一种改进的基于频繁访问页组的路径聚类算法K-PathPlus,其中定义了新的兴趣度、内容链接因子。最后采用龙城热线网站日志进行真实测试,实验的结果是成功的。 The page clustering based on user sessions is to group the frequently visited pages,which can help the webmaster to optimize the site topology.This paper will introduce an improved clustering algorithm based on users' access interest. K-PathPlus defines new interest degree,content-link ratio.In the end a true experiment is done by using www.ty.sx.cn log file. The result of experiment is successful.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第33期130-131,共2页 Computer Engineering and Applications
基金 山西省自然科学基金No.2008021025~~
关键词 访问兴趣 聚类 路径聚类 数据挖掘 兴趣度 内容链接因子 access interest clustering path clustering data mining interest degree content-link ratio
  • 相关文献

参考文献8

  • 1钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86
  • 2吴俊杰,陈俊杰,赵栓柱.基于用户访问兴趣的路径聚类研究[J].计算机工程与应用,2005,41(36):170-171. 被引量:7
  • 3杨怡玲,管旭东,尤晋元.基于页面内容和站点结构的页面聚类挖掘算法[J].软件学报,2002,13(3):467-469. 被引量:20
  • 4Mobasher B,Dai H,Luo T,et al.Discovery and evaluation of aggregate usage profiles for Web personalization[J].Data Mining and Knowledge Discovery,2002,6(1):61-82.
  • 5Cadez I,Heckerman D,Meek C,et al.Model-based clustering and visualization of navigation patterns on a Web site[J].Data Mining and Knowledge Discovery,2003,7(4):399-424.
  • 6Grabmeier J,Rudolph A.Techniques of cluster algorithms in data mining[J].Data Mining and Knowledge Discovery,2002,6(4):303-360.
  • 7Cho Y H,Kim J K,Kim S H.A personalized recommender system based on Web usage mining and decision tree induction[J].Expert Systems with Applications,2002,23(3):329-342.
  • 8Tan P,Kumar V.Discovery of Web robot sessions based on their navigational patterns[J].Data Mining and Knowledge Discovery,2002,6(1):9-35.

二级参考文献42

  • 1[1]Cooley,R.,Srivastava,J.Data preparation for mining World Wide Web browsing patterns.Journal of Knowledge and Information Systems,1999,1(1):5~32.
  • 2[2]Fayyad,U.M.,Piatetsky-Shapiro,G.,Smyth,P.The KDD process for extracting useful knowledge from volumes of data.Communications of the ACM,1996,39(11):27~34.
  • 3[3]Mobasher,B.,Jain,N.,Han,E.H.,et al.Web mining:pattern discovery and from World Wide Web transactions.Technical Report,96-050,University of Minnesota,1996.
  • 4[4]Wu,K.L.,Yu,P.S.,Ballman,A.SpeedTracer:a web usage mining and analysis tool.IBM System Journal,1998,37(1):89~105.
  • 5[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 6[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 7[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 8[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 9[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 10[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.

共引文献110

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部