摘要
传统Normalized Cut准则的图像分割需求解广义特征方程,二值化分割效果不佳。为改善图像分割效果,将NormalizedCut准则作为优化函数,使用遗传算法进行优化,通过最优化染色体确定分割结果。实验表明该方法能获得较高精度的分割结果。
Image segmentation using traditional Normalized Cut criterion needs to compute the generalized eigenvector, and the result of the binary segmentation is not satisfactory.In order to improve the image segmentation,this paper uses genetic algorithm to optimize the Normalized Cut criterion,and gets the segmentation results through the optimal chromosome.Experiments show that this method can obtain precision segmentation results.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第33期148-150,157,共4页
Computer Engineering and Applications
基金
国家自然科学基金No.10974130
No.60803088
中央高校基本科研业务费专项资金资助No.GK200901006~~
关键词
图像分割
归一化划分
遗传算法
image segmentation
Normalized Cut
genetic algorithm