期刊文献+

NA行列阵的完全收敛性

Complete Convergence for Arrays of Rowwise Negatively Associated Random Variables
下载PDF
导出
摘要 在前人研究的基础上,证明了NA随机变量序列阵满足一定条件下的完全收敛性.根据这个定理得出两个推论,即NA随机变量序列阵在EXni1+λn<□?,1≤i≤bn,n≥1条件下和NA随机变量序列阵由随机变量X控制的Toeplitz阵情形下的完全收敛性. In this paper , according the previously result, some resuhs on complete convergence for arrays of rowwise negatively associated random variables are presented. Based on this theorem, two corollaries are presented. One condition is for arrays of rowwise negatively associated random variables in EXni1+λn〈□?,1≤i≤bn,n≥1, the other condition is for arrays of rowwise negatively associated random variables controled by random variable X of Toeplitz matrix.
作者 张林松
出处 《合肥学院学报(自然科学版)》 2010年第4期1-3,共3页 Journal of Hefei University :Natural Sciences
基金 安徽省教育厅自然科学一般项目(KJ2010B181) 合肥学院自然科学基金项目(08KY024ZR)资助
关键词 NA行列阵 完全收敛性 Toeplitz阵 A.S.收敛 arrays of rowwise NA complete convergence Toeplitz array a.s. convergence
  • 相关文献

参考文献7

  • 1Joag-Dev K, Proschan F. Negative Association of Random Variables with Applications. [ J ]. Ann Statist, 1983 (11 ) :286-295.
  • 2苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 3Matula P. A Note on The Almost Sure Convergence of Sums of Negatively Dependent Random Variables [ J ]. Statist Probab Lett, 1992( 15 ) :209-213.
  • 4Liang H, Su C. Complete Convergence for Weight Sums of NA Sequences[ J ]. Statist Probab Lett, 1999,45:85-95.
  • 5Li Y X, Zhang L X. Complete Moment Convergence of Moving-average Process Under Dependence Assumptions [ J ]. Statist Probab Lett,2004,70 : 191-197.
  • 6Hu S H, Wang X J, Yang W Z, et al. The Hajek-Renyi-type Inequality for Associated Random Variables [ J ]. Statist Probab Lett, 2009,79 : 884 -888.
  • 7Shao C M. A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables[ J]. Theoret Probab Lett,2000( 13 ) :343-356.

二级参考文献1

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部