期刊文献+

传感数据起源信息的多粒度标注与多分辨压缩 被引量:1

Multi-Granularity Annotations and Multi-Resolution Compression Algorithm for Sensor Data Provenance
下载PDF
导出
摘要 为了有效地追溯传感器网络中传感数据的生成与处理历史,提出一种面向无线传感器网络数据重发布的数据起源生成及传播方法.根据传感网数据起源特点分析了3种不同粒度起源的创建和传播.提出mgp-SQL语句实现了查询传播意义上起源的多粒度化;为降低传感网对起源信息的传输成本和存储成本,提出了一种基于离散小波分解理论的多分辨率起源压缩方法;根据传感网络起源信息的生成和发布的过程,结合上述2种技术实现了传感数据起源追溯算法MMPQ.真实数据及合成数据上的测试实验证明,MMPQ可以在查询过程中灵活调节压缩比率,生成适当分辨率的起源标注并高效存储. In order to trace the producing and processing history of data in sensor network efficiently,a generation and transmission method of data provenance management for data distribution in sensor network is proposed.According to the characteristics of data provenance in sensor network,generations and transmissions of 3 different granularity provenances are introduced and new mgp-SQL query syntax is proposed to realize multi-granularity provenance annotation.Then a method of multi-resolution provenance compression based on discreet wavelet resolution theory is presented to reduce the costs of data transmission and storage in sensor network.Finally,a provenance query algorithm for sensor data-MMPQ is realized in combination with 2 previous technologies.Experiments on real and synthetic data set show that MMPQ can flexibly adjust the compression ratio in the query process and generate the appropriate resolution provenance annotation and gain cost-effective storage capacity.
出处 《南通大学学报(自然科学版)》 CAS 2010年第3期92-101,共10页 Journal of Nantong University(Natural Science Edition) 
基金 黑龙江省教育厅科学技术项目(11531366) 佳木斯大学科学技术研究项目(L2008-070)
关键词 传感器网络 数据起源 多粒度标注 多分辨压缩 sensor network data provenance multi-granularity annotation multi-resolution compression
  • 相关文献

参考文献16

  • 1Reddy S,Chen G,Fulkerson B,et al.Sensor-internet share and search enabhng collaboration of citizen scientists[C] //Proceedings of the ACM Workshop on Data Sharing and Interoperability on the World-wide Sensor Web,Cambridge,Mass.,USA,2007:11-16.
  • 2Summa N,Amol D,Yan K,et al.Irisnet:an architecture for internet-scale sensing services[J].IEEE Pervasive Computing,2003,2(4):1-10.
  • 3Ludascher B,Altintas I,Berkley C,et al.Scientific workflow management and the kepler system:Research articles[J].Concurr.Comput.:Pract.Exper.,2006,18(10):1039-1065.
  • 4Bhagwat D,Chiticariu L,Tan W C,et al.An annotation management system for relational databases[C] //Proceedings of the 30th VLDB Conference,VLDB Endowment Press Toronto,Canada,2004:900-911.
  • 5Christopher R,Dan S.Approximate lineage for probabilistic databases[C] //VLDB '08,VLDB Endowment Press,Auckland,New Zealand,2008:797-880.
  • 6Anna C G,Yannis K,Muthukrishnan S,et al.One-passwavelet decompositions of data streams[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(3):541-554.
  • 7Yogesh L S,Beth P,Dennis G.A suivey of data provenance in e-science[J].SIGMOD Record,2005,34(3):31-36.
  • 8Adriane P C,Jagadish H V,Prakash R.Efficient provenance storage[C] //SIGMOD'08,Vancouver,B.C.,Canada,2008:993-1006.
  • 9Buneman P,Tan W C.Provenance in databases[C] //SIG-MOD '07.New York:ACM Press,2007:1171-1173.
  • 10Cormode G,Garofalakis M.Sketching probabilistic data streams[C] //Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data.New York:ACM,2007:281-292.

二级参考文献98

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2Wang Y Richard, Madnick Stuart E. A polygen model for heterogeneous database systems: The source tagging perspective//Proceedings of the 16th International Conference on Very Large Data Bases. Brisbane, Queensland, Australia, 1990:519-538.
  • 3Lanter D P. Design of a lineage-based meta-data base for GIS. Cartography and Geographic Information Systems, 1991, 18:255-261.
  • 4Woodruff A, Stonebraker M. Supporting fine-grained data lineage in a database visualization environment//Proceedings of the 13rd IEEE International Conference on Data Engineering. Birmingham, England, 1997:91-102.
  • 5Cui Y, Widom J, Wiener J L. Tracing the lineage of view data in a warehousing environment. The ACM Transactions on Database Systems, 2000, 25(2): 179-227.
  • 6Buneman P, Khanna S, Tan WC. Why and where, A characterization of data provenanee//Proceedings of the 17th International Conference on Data Engineering. London, UK 2001:316-330.
  • 7Simmhan Yogesh L, Plale Beth, Gannon Dennis. A survey of data provenance techniques. Computer Science Department: Indiana University, Bloomington IN: Technical Report IUB-CS-TR618, 2001.
  • 8Glavic Boris, Dittrich Klaus. Data provenance: A categorization of existing approaehes//Proceedings of the 6th MMC Workshop of BTW 2007. Aachen, Germany, 2007:227-241.
  • 9Glavic Boris, Alonso Gustavo. Perm: Processing provenance and data on the same data model through query rewriting// Proceedings of the 25th IEEE International Conference on Data Engineering. Shanghai, China, 2009: 174-185.
  • 10Kolaitis P G. Schema mappings, data exchange, and metadata management//Proceedings of the 24th ACM SIGMOD- SIGACT-SIGART Symposium on Principles of Database Systems. Baltimore, Maryland, USA, 2005:61- 75.

共引文献78

同被引文献11

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部