摘要
把容斥原理形式进一步的推广得到一些更普遍的形式.对于任何一个集合S,推广到在性质a1,a2,…,aq中具有r个性质,在性质aq+1,…,an中具有k个性质的元素的个数为:N(r,k)=∑0≤i≤q-r 0≤j≤n-q-k(-1)i+j(r+i r)(k+j k)N r+i,k+j,使得容斥原理的应用范围扩大化.
By further promoting the principle of permutations form some of the more common form are ob-tained.To any aggregation S,……the number of element with r character inα1,α2…,αq,and k character in αq+1,…,αn,is determined by N(r,k)=∑0≤i≤q-r 0≤j≤n-q-k(-1)i+j(r+i r)(k+j k)N r+i,k+j,.The applications of permutations principle are enlarged.
出处
《广东技术师范学院学报》
2010年第9期4-6,共3页
Journal of Guangdong Polytechnic Normal University
关键词
容斥原理
计数理论
排列
permutations principle
counting theory
the arrangement