期刊文献+

图的反符号圈控制

On reverse signed cycle domination in graphs
下载PDF
导出
摘要 为丰富图的控制理论,引入了图的反符号圈控制的概念.通过对图的结构分析,给出了阶数为n、边数为m的简单图的反符号圈控制数的一个紧的上界.对一些特殊图类,通过给出具体的反符号圈控制函数的方法,给出了反符号圈控制数的精确值. In order to enrich the domination theory of graphs,it was introduced the concept of reverse signed cycle domination in graphs.By analysis the structure of graphs,it was obtained the upper bound of γ′rsc(G) for general graphs G while |V(G)|=n,|E(G)|=m.It was determined the exact values of reverse signed cycle domination number for special classes of graphs by given a reverse signed cycle domination function.
出处 《浙江师范大学学报(自然科学版)》 CAS 2010年第4期407-410,共4页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10771197 10971198)
关键词 反符号控制函数 反符号控制数 生成圈 特殊图类 reverse signed cycle domination function reverse signed cycle domination number induced cycle special classes of graphs
  • 相关文献

参考文献5

  • 1Bondy J A,Murty U S R. Graph Theory With Applications[ M]. New York:Macmillan Press LTD,1976.
  • 2Haynes T W, Hedetniemi S T, Slater P J. Domination in Graphs [ M ]. New York : Marcel Dekker Inc, 1998.
  • 3Xa Baogen. On signed edge domination numbers of graphs [ J ]. Discrete Math ,2001,239 (1/2/3) :179-189.
  • 4Xu Baogen. On signed cycle domination in graphs [ J ]. Discrete Math,2009,309 (4) : 1007-1012.
  • 5徐保根.关于图的符号星控制数[J].华东交通大学学报,2004,21(4):116-118. 被引量:17

二级参考文献3

  • 1[1]J.A.Bondy, V.S.R.Murty, Graph Theory with Applications[M], Elsevier, Amsterdam,1976.
  • 2[2]Baogen.Xu, On signed edge domination numbers of graphs[J], Discrete Math. 239 (2001) 179~189
  • 3[4]F.哈拉里,图论[M],上海:上海科学技术出版社,1980.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部