期刊文献+

Mg-Gd二元合金中β′-Mg_7Gd沉淀相的第一性原理计算研究 被引量:1

原文传递
导出
摘要 亚稳β′相是Mg-Gd系合金中最有效的沉淀强化相.采用基于密度泛函理论的第一性原理计算研究了Mg-Gd二元合金中β′-Mg7Gd沉淀相的晶格常数、弹性性质以及电子结构.计算结果表明,β′-Mg7Gd与α-Mg基体的晶格错配能够合理解释实验观察到的β′相的形貌.采用弹性常数分析了该相的力学性能及其成键特性.结果表明,β′-Mg7Gd为硬质脆性相.电子结构表明β′-Mg7Gd相中存在强烈的共价键,同时解释了其力学性能.本文的理论计算结果同实验观察的结果吻合.
出处 《科学通报》 EI CAS CSCD 北大核心 2010年第30期2966-2971,共6页 Chinese Science Bulletin
基金 国家重点基础研究发展计划(2007CB613704) 国家自然科学基金(50874100)资助项目
  • 相关文献

参考文献33

  • 1Nie J F, Oh-ishi K, Gao X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy. Acta Mater, 2008, 56: 6061-- 6076.
  • 2Gao L, Chen R S, Han E H. Microstructure and strengthening mechanisms of a cast Mg-l.48Gd-l.13Y-0.16Zr (at%) alloy. J Mater Sci, 2009, 44:4443--4454.
  • 3Gao X, He S M, Zeng X Q, et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt%) alloy during isothermal aging at 250℃. Mater Sci Eng A, 2006, 431:322--327.
  • 4Honma T, Ohkubo T, Hono K, et al. Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at%) alloy investigated by the atom probe technique. Mater Sci Eng A, 2005, 395:301--306.
  • 5He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt%) alloy during isothermal ageing at 250℃. J Alloys Compd, 2006, 421:309--313.
  • 6Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd- 1.2Y-0.2Zr alloys. Acta Mater, 2007, 55: 4137--4150.
  • 7Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys. Scr Mater, 2009, 61:636-639.
  • 8Nie J F, Muddle B C. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Mater, 2000 48:1691--1703.
  • 9Nishijima M, Hiraga K, Yamasaki M, et al. Characterization of beta' phase precipitates in an Mg-5 at% Gd alloy aged in a peak hardness condition, studied by high-angle annular detector dark-field scanning transmission electron microscopy. Mater Trans, 2006, 47: 2109-- 2112.
  • 10Kresse G, Furthmtiller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54:11169--11186.

二级参考文献32

  • 1Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59:1758-1775.
  • 2Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46:6671-6687.
  • 3Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13:5188.
  • 4Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B, 1989, 40:3616-3621.
  • 5Blochl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B, 1994, 49:16223-16233.
  • 6Busk R S. Lattice parameters of magnesium alloys. AIME Trans, 1950, 188:1460-1464.
  • 7Mordike B L, Ebert T. Magnesium: Properties-applications-potential. Mater Sci Eng A, 2001, 302:37-45.
  • 8Gao L, Chen R S, Hart E H. Microstructure and strengthening mechanisms of a cast Mg-1.48Gd-1.13Y-0.16Zr (at.%) alloy. J Mater Sci, 2009, 44:4443-4454.
  • 9Mordike B L. Creep-resistant magnesium alloys. Mater Sci Eng A, 2002, 324:103-112.
  • 10Suzuki M, Sato H, Maruyama K, et al. Creep behavior and deformation microstructures of Mg-Y alloys at 550 K. Mater Sci Eng A, 1998, 252:248-255.

共引文献1

同被引文献28

  • 1郑伟超,李双寿,汤彬,曾大本.混合稀土对AZ91D镁合金组织和力学性能的影响[J].金属学报,2006,42(8):835-842. 被引量:47
  • 2JUNG I, SANJARI M, KIM J, YUE S. Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg-RE alloys[J]. Scripta Mater, 2015, 102: 1-6.
  • 3LUKYANOVA E A, ROKHLIN L L, TABACHKOVA Y N, DOBATKINA T V, NIKITINA N I. Reversion after ageing in an Mg-Y-Gd-Zr alloy[J]. J Alloys Compd, 2015, 635: 173-179.
  • 4LUO A, PEKGULERYUZ M O. Cast magnesium alloys for elevated temperature applications[J]. J Mater Sci, 1994, 29: 5259-5271.
  • 5DUAN Y H, SUN Y, PENG M J, ZHOU S G. Ab-initio investigations on elastic properties in L12 structure A13Sc and AlaY under high pressure[J]. J Alloys Compd, 2014, 585: 587-593.
  • 6HARADA Y, DUNAND D C. Creep properties of AI3Sc and A13(Sc, X) intermetallics[J]. Acta Mater, 2000, 48: 3477-3487.
  • 7TAO X M, OUYANG Y, LIU H, FENG Y P, DU Y, JIN Z P. Ab initio calculation of the total energy and elastic Properties of Laves Phase C15 AI:RE (RE=Sc,Y,La, Ce-Lu)[J]. Comp Mater Sci, 2008, 44: 392-399.
  • 8VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review, 1990, 41: 7892-7895.
  • 9WHITE J A, BIRD D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations[J]. Physical Review, 1994, 50: 4954-4957.
  • 10PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation exchange-correlation energy[J]. Phys Rev Lett, 1996, 77: 3865-3868.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部