期刊文献+

基于有限体积HWENO格式的一维溃坝流模拟

Simulation of one-dimensional dam break based on finite volume HWENO scheme
下载PDF
导出
摘要 基于浅水波方程组建立一维溃坝流模型,并给出数值模拟结果.其中,空间离散采用HWENO(Hermit Weighted Es-sentially Non-Oscillatory)格式,时间离散采用四步TVD(Total Variation Diminish-ing)Runge-Kutta方法,模拟堤坝溃决时洪水演进过程.模拟结果表明:较采用WENO格式所得数值解更精确;同时,相比WENO格式的相应算法,该算法解决一维溃坝流问题能更有效地减弱振荡,对间断具有更高的分辨率. This paper presents a new model of one-dimensional dam break flows based on shallow water equations, in which HWENO scheme is employed for spacial discretization and four steps TVD Runge-Kutta method is used for time discretization. The numerical results demonstrate that they are more accurate than those based on WENO scheme;simultaneously, the program in this paper can weaken oscillation for one-dimensional dam-break flows more effectively, and possesses higher resolution than that of WENO scheme.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2010年第5期477-480,共4页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家青年基金(40906048)
关键词 溃坝流 有限体积法 HWENO格式 dam-break flows finite volume methods HWENO scheme
  • 相关文献

参考文献8

  • 1Choi S, Paik J. Performance test of high resolution schemes for 1D dam break problem[ J]. KSCE Journal of Civil Engineering,2001, 5 ( 3 ) :273-280.
  • 2Lin G F, Lai J S, Guo W D. Performance of high resolution TVD schemes for 1D darn break simulations[ J]. Journal of the Chinese Institute of Engineers,2005,28(5 ) :771-782.
  • 3鲍远林,周晓阳.移动边界的有限体积KFVS方法在一维溃坝波计算中的应用[J].水利学报,2005,36(12):1470-1474. 被引量:3
  • 4Mambretti S, Larcan E, Wrachien D D. 1D modelling of dam-break surges with floating debris[ J]. Biosystems Engineering,2008,100 (2) :297-308.
  • 5刘玉玲,王玲玲,周孝德,杨国丽.闸门瞬间开启水流的WENO格式数值计算[J].武汉大学学报(工学版),2009,42(3):281-283. 被引量:1
  • 6卢长娜.浅水间断流的高精度WENO有限体积数值模型研究[D].南京:河海大学数理学院,2008.
  • 7Qiu J X,Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:One dimensional case [J]. Journal of Computational Physics, 2004,193 (1) :115-135.
  • 8Stoker J J. Water waves:The mathematical theory with applications [ M]. New York : Wiley Inter-Science, 1992.

二级参考文献25

  • 1张青玉,李泽刚.黄河口潮流数值模拟[J].人民黄河,1994,17(1):9-11. 被引量:2
  • 2魏文礼,郭永涛,王纪森.一维溃坝洪水波的高精度数值模拟[J].计算力学学报,2007,24(3):362-364. 被引量:13
  • 3何少苓 王连祥.窄缝法在二维边界变动水域计算中的应用[J].水利学报,1986,(12):11-19.
  • 4Harten A. High resolution schemes for hyperbolic conservation laws[J].J. Comp. Phys., 1983,49: 357-393.
  • 5Harten A,Engquist B,Osher S, Chakravarthy S. Uniformly high order essentially non-oscillatory scheme[J]. Journal of Computational Physics, 1987,71 : 231- 303.
  • 6Liu X D, Osher S,Chan T. Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994,115:200-212.
  • 7Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J. Comput. Phys. , 1988,77(2):439-471.
  • 8Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes[J]. J. Comput. Phys. , 1981,43:357-367.
  • 9Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. J Comput. Phys, 1996, 126:202-228.
  • 10Stoker J J. Waterwaves[M]. Intersience Publishers, Wiley & Sons, NewYork, 1957.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部