期刊文献+

一类离散捕食-食饵系统的动力学研究

Study on Dynamics of One Discrete Predator-prey System
下载PDF
导出
摘要 讨论了一类离散捕食-食饵系统的动力学行为.首先分析了系统不动点的稳定性,然后通过数值模拟阐释了该系统随参数变化而发生倍周期分支进入混沌和发生Neimark-Sacker分支的情形.表明该系统具有较复杂的动力学行为. One discrete predator-prey system's dynamic behavior was discussed. Firstly, stability of the system's fixed points was analyzed. Then numerical simulation was presented to illustrate the system underwent period-doubling bifurcation to Chaos and Neimark-Sacker bifurcation when parameters changed. It is shown that complex dynamic behavior occurs in the system.
作者 肖桂宏 鲍磊
出处 《温州大学学报(自然科学版)》 2010年第5期32-38,共7页 Journal of Wenzhou University(Natural Science Edition)
关键词 离散捕食-食饵系统 李雅普诺夫指数 混沌 分形维数 Discrete Predator-prey System Lyapunov Exponent Chaos Fractal Dimension
  • 相关文献

参考文献7

  • 1Murray J D. Mathematical Biology [M]. 2nd ed. Berlin: Springer-Verlag, 1998: 72-78.
  • 2Liu X L, Xiao D M. Complex dynamic behaviors of a discrete-time predator-prey system [J]. Chaos Solitons and Fractals, 2007, 32: 80-94.
  • 3RobinsonRC.动力系统导论[M].韩茂安,邢业鹏,毕平,译.北京:机械工业出版社,2007:484-492.
  • 4Edward O. Chaos in dynamical systems [M]. 2nd ed. Cambridge: Cambridge University Press, 1993: 137-145.
  • 5Oseledec V I, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems [J]. Transaction of Moscow Mathematical Society, 1968, 19: 197-231.
  • 6Kaplan J L, Yorke Y A. A regime observed in a fluid flow model of Lorenz [J]. Communications in Mathematical Physiscs, 1979, 67: 93-108.
  • 7Cartwright J H E. Nonlinear stiffness, Lyapunov exponents, and attractor dimension [J]. Physics Letters A, 1999, 264: 298-302.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部