摘要
采用脉冲响应矩阵将多自由度动力系统响应及其设计变量的灵敏度表示成积分形式,它适用于质量矩阵、阻尼矩阵和刚度矩阵非对称及非比例阻尼情况.利用响应灵敏度表达系统振动控制性能指标极值关于设计变量的灵敏度,指出该基于一阶导数的极值灵敏度不受达到极值时间灵敏度的影响.分析周期激励与冲击作用下的振动控制灵敏度和优化动力修改问题.
By means of the impulse response matrix method, dy namic responses of multi DOF syste ms and their sensitivity with resp ect to design variables are expres sed in the form of integration, wi thout the conditions of proportion al damping and symmetric mass, dam ping and stiffness matrices. The s ensitivity of performance measure extreme values for vibration contr ol with respect to design variable s is expressed using the response sensitivity. The extreme value sen sitivity based on the first order differentiation is not affected by its time sensitivity. The sensitiv ity of vibration control to period ic excitation and shock with respe ct to design variables and dynamic design optimization problems are d iscussed.
出处
《固体力学学报》
CAS
CSCD
北大核心
1999年第2期177-181,共5页
Chinese Journal of Solid Mechanics
关键词
响应灵敏度
振动控制
脉冲响应矩阵
多自由度
response sensi tivity, vibration control, impulse response matrix, extreme value sen sitivity, dynamic design optimizat ion