期刊文献+

纳米铁系材料与反硝化细菌复合去除地下水硝酸盐氮研究 被引量:12

Reducing nitrate in groundwater by denitrifying bacteria combined with nanoiron-based materials
原文传递
导出
摘要 采用不同液相还原法制备了纳米Fe、纳米Fe/Ni和油酸钠包覆型纳米Fe粒子,并将其与反硝化细菌复合应用于地下水中硝酸盐氮的去除研究中.分别考察了不同纳米铁系材料与反硝化细菌复合体系去除硝酸盐氮的反应速率及对脱氮产物生成的影响.同时,从核糖核酸(RNA)水平考察了不同纳米铁系材料对反硝化细菌的影响.结果表明,纳米Fe/Ni复合体系脱氮速率最快,6d内对硝酸盐氮的去除率可达到100%,最终产物主要为氨氮,占体系总氮的69%;而纳米Fe和油酸钠包覆型纳米Fe复合体系9d可将硝酸盐氮100%去除,氨氮的转化率分别为52%和16%.另外,从反应前后反硝化细菌总RNA浓度的变化情况看,纳米Fe/Ni复合体系、纳米Fe复合体系和油酸钠包覆型纳米Fe复合体系的反硝化细菌总RNA浓度分别降低了93%、40%和34%,可见3种纳米铁系材料对反硝化细菌毒性大小顺序为:纳米Fe/Ni>纳米Fe>油酸钠包覆型纳米Fe. Three nanoiron-based particles,Fe,Fe/Ni and sodium oleate-coated Fe,were synthesized by liquid-phase reduction methods and then integrated with denitrifying bacteria to remove nitrate from groundwater.Batch experiments were carried out to examine the removal rate of nitrate and the final nitrogen transfomation products in these particle-bacteria systems.Also,the total RNA content in these systems was measured to evaluate the toxicity of nanoiron-based particles on the integrated bacteria.The results showed that almost 100% removal of nitrate was reached within 6 days in the Fe/Ni nanoparticle-bacteria system,and the ratio of ammonium to TN was 69% in the final products.Both nano-scale Fe and sodium oleate-coated Fe particlebacteria systems took 9 days to complete 100% removal of nitrate,producing 52% and 16% ammonium,respectively.The total RNA of the integrated bacteria decreased in content by 93%,40% and 34% in the Fe/Ni,Fe and sodium oleate-coated Fe nanoparticle-bacteria systems respectively,which suggested the toxicity of these nanoparticles to denitrifying bacteria should be in the sequence:nano-scale Fe/Ni nano-scale Fe sodium oleate-coated Fe.
出处 《环境科学学报》 CAS CSCD 北大核心 2010年第12期2439-2444,共6页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.40971254) 青年科学基金(No.20907023)~~
关键词 地下水 硝酸盐氮 纳米FE 纳米Fe/Ni 油酸钠包覆型纳米Fe 反硝化细菌 groundwater nitrate nano-scale Fe nano-scale Fe/Ni sodium oleate-coated Fe denitrifying bacteria
  • 相关文献

参考文献32

  • 1Agrawal A, Tratnyek P G. 1996. Reduction of nitro aromatic compounds by zero-valent iron metal [ J ]. Environmental Science & Technology, 30 : 153-160.
  • 2Alowitz M J, Scherer M M. 2002. Kinetics of nitrate, nitrite and Cr(Ⅵ) reduction by iron metal [ J]. Environmental Science & Technology, 36 (3) :299-306.
  • 3An Y, Li T L, Jin Z H, et al. 2009. Decreasing ammonium generation using hydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron [ J]. Science of the Total Environment, 407:5465-5470.
  • 4Auffan M, Achouak W, Rose J, et al. 2008. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli [J]. Environmental Science & Technology, 42:6730-6735.
  • 5Campos J L, Carvalho S, Portela R, et al. 2008. Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds [J ]. Bioresource Technology ,99 : 1293-1299.
  • 6Chen Y M, Li C W, Chen S S. 2005. Fluidized zero valent iron bed reactor for nitrate removal[ J ]. Chemosphere, 59 (6) : 753-759.
  • 7Cheng I F, Muftikian R, Fernando Q, et al. 1997. Reduction of nitrate to ammonia by zero-valent iron [ J ]. Chemosphere, 35 ( 11 ) : 2689-2696.
  • 8Choe S, Chang Y Y, Hwang K Y. 2000. Kinetics of reductive denitrification by nanoscale zero-valent iron [ J ]. Chemosphere,41 (8) : 1307-1314.
  • 9Daniels L, Belay N, Rajagopal B S, et al. 1987. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons [ J ]. Science, 237 (4814 ) : 509-511.
  • 10Flis J. 1991. Stress corrosion cracking of structural steels in nitrate solutions [ A ]// Flis J. Corrosion of metals and hydrogen-related phenomena[ C]. Amsterdam, Elsevier Science Publishers. 57-94.

二级参考文献47

共引文献530

同被引文献152

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部