期刊文献+

国产核二、三级换热器传热管点蚀及模拟核岛废液腐蚀行为

Pitting Corrosion and Corrosion Behavior of Domestic Nuclear Safe Grade 2 and 3 Heat Exchanger Tubes in Simulated Nuclear Island Waste Residue Environment
下载PDF
导出
摘要 核电站核二、三级换热器传热管多为进口304L不锈钢,新建核电站已陆续采用国内制造的304L传热管。试验模拟了传热管实际应用环境,对国产304L的点蚀行为及核岛废液环境下应力腐蚀行为进行研究。结果表明,发生点蚀的临界FeCl3溶液质量分数为0.1%和0.5%之间;随着氯离子浓度的增加,304L自腐蚀电位降低。模拟核电站核岛废液环境(H3BO3+NaOH+Cl-),制作反U型弯曲试样,使用高温高压釜进行500 h模拟试验,304L未发现应力腐蚀裂纹。 Imported 304L was used in nuclear safe grade 2 and 3 heat exchanger tubes in nuclear power plants and domestic materials are used in new built plants.In simulated actual running environment,pitting corrosion and stress corrosion cracking(SCC) of domestic 304L in nuclear island waste residue environment were studied and evaluated.Results showed that critical FeCl3 concentration for pitting corrosion was between 0.1% and 0.5%.Polarization curves showed that the corrosion potential increased with reducing Cl-concentration.Five hundred hours experiment was performed in autoclave with simulated nuclear island waste residue environment of H3BO3+NaOH+Cl-by using reverse U-bend samples and the results showed that SCC did not appear.
出处 《腐蚀与防护》 CAS 北大核心 2010年第11期860-862,867,共4页 Corrosion & Protection
关键词 核级传热管 点蚀 应力腐蚀 nuclear class heat exchanger tube pitting corrosion stress corrosion
  • 相关文献

参考文献4

二级参考文献21

  • 1Osama M Alyousif, Rokuro Nishimura. The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions[J]. Corrosion Science, 2007, 49: 3040-3051.
  • 2Katsumi Yamamoto, Keizo Hosoya. Corrosivity of Br^- and C1^- on duplex stainless steel[J]. Materials Science and Engineering, 1995, 198: 239-243.
  • 3Masayuki Kamaya, Takumi Haruna. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel[J]. Corrosion Science, 2007, 49(8): 3303-3324.
  • 4Osama M Alyousif, Rokuro Nishimura. The effect of test temperature on SCC behavior of austenitic stainless steels in boiling saturated magnesium chloride solution[J]. Corrosion Science, 2006, 48(12): 4283-4293.
  • 5Monika Gomez-Duran, Digby D. Macdonald Stress corrosion cracking of sensitized type 304 stainless steel in thiosulphate solution (Ⅱ). Dynamics of fracture[J]. Corrosion Science, 2006, 48(7) : 1608-1622.
  • 6Rokuro Nishimura. Characterization and perspective of stress corrosion cracking of austenitic stainless steels (type 304 and type 316) in acid solutions using constant load method[J]. Corrosion Science, 2007, 49(1): 81-91.
  • 7Rokuro Nishimura, Yasuaki Maeda. Stress corrosion cracking of type 304 austenitic stainless steel in sulphuric acid solution including sodium chloride and chromate[J]. Corrosion Science, 2004, 46(2): 343-360.
  • 8Rokuro Nishimura. The effect of chloride ions on stress corrosion cracking of type 304 and type 316 austenitic stainless steels in sulfuric acid solution[J]. Corrosion Science, 1993, 34( 11 ): 1859-1868.
  • 9Cansever N, Cakir A F, Urgen M. New accelerated test for studying the susceptibility of stainless steels to chloride stress corrosion cracking under salt crust[J]. Corrosion Science, 1996, 38(11): 2043-2048.
  • 10Martinez L, Malki B, Berthome G, et al. Ar-implantation on AISI304 stainless steel against pit initiation processes[J]. Surface & Coatings Technology, 2006, 201: 1671-1678.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部