期刊文献+

Lipschitz区域上一类非自治时滞抛物方程的吸引子

Uniform Attractors for a Class of Non-autonomous Parabolic Equations with Delays in Lipschitz Domains
原文传递
导出
摘要 本文研究了Ljpschitz区域上的一类非自治时滞抛物方程,得到其整体解的存在唯一性,并通过构造乘积空间中的紧吸收集,在时间符号空间非紧的情形下证明了一致吸引子的存在性. Our aim in this paper is to study the asymptotic behavior of a class of parabolic equations with delays in Lipschitz domains.Firstly the existence and uniqueness of solutions are obtained,and then by constructing the compact absorbing set in product space,we prove the existence of uniform attractors for the systems with symbols that is not translation compact.
作者 王圆 黄建华
出处 《应用数学学报》 CSCD 北大核心 2010年第6期1049-1060,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571175 10971225)资助项目
关键词 一致吸引子 LIPSCHITZ区域 平移有界函数类 非自治抛物方程 时滞 uniform attractor Lipschitz domain translation bounded functions non-autonomous parabolic equations time delays
  • 相关文献

参考文献10

  • 1Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981.
  • 2Cantrell R S, Cosner C. Spatial Ecology via Reaction-diffision Equations. Chichester: John Wiley & Sons, Ltd., 2003.
  • 3Rezounenko A V, Wu J H. A non-local PDE Model for Population Dynamics with State-selective Delay: Local Theory and Global Attrators. J. Comput. Appl. Math., 2006, 190:99-113.
  • 4Robinson J C. Infinite-dimensional Dynamical Systems. Cambridge: Cambridge University Press, 2001.
  • 5Chueshov I D. Introduction to the Theory of Infinite-dimensional Dissipative Systems. Ukraine Acta. 2002.
  • 6Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer- Verlag, 1997.
  • 7Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence RI: AMS, 2002.
  • 8Caraballo T, Real J. Navier-Stokes Equations with Delays. Roy. Soc. London Proc. Set. A Math. Phys. Eng. Sci., 2001, 457(2014): 2441-2453.
  • 9Caraballo T, Real J. Attractors for 2D-Navier-Stokes Models with Delays. J. Differential Equations, 2004, 205:271-297.
  • 10Brown R M, Perry P A, Shen Z W. On the Dimension of the Attractor for the Non-homogeneous Navier-Stokes Equations in Non-smooth Domains. Indiana Univ. Math. J., 2000, 49(1): 81-112.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部