期刊文献+

自适应粒子滤波在人体跟踪过程中的应用 被引量:1

Markerless Human Motion Tracking Based on Adaptive Particle Filtering
下载PDF
导出
摘要 人体运动跟踪技术近年来在图像处理与计算机视觉领域引起很多关注,在当前一些重要研究和应用领域有着广泛的需求。在以往跟踪方法的基础上提出了基于决策规则的自适应粒子滤波的无标记运动目标跟踪方法。利用一个带外观模板的人体关节模型,通过学习得到运动模型及基于关节模型的相似性计算,巧妙地利用自适应粒子滤波对运动目标进行实时跟踪,使得在粒子滤波过程中,可以根据实际滤波情况在线调节粒子数。实验表明,提出的算法鲁棒性好,跟踪速度比基于传统粒子滤波的快。 In this paper,an adaptive particle filtering algorithm based on decision-making rule is proposed for tracking non-mark-ing human motion.With an articulated human model constructed,the new approach uses the adaptive particle filtering algo-rithm through the learnt motion model and likelihood computing with the appearance models to track the human motion and achieve the goal of movement of real-time tracking,In the process of particle filtering,according to the actual situation particle count can be adjusted on-line particle filter.Experimental results from real monocular videos show that the new ap-proach is robust and the tracking results are better than traditional particle filter.
出处 《工业控制计算机》 2010年第11期59-60,63,共3页 Industrial Control Computer
基金 国家自然科学基金项目(60873020) 浙江省自然科学基金重点项目(z1080702)
关键词 人体运动跟踪 自适应粒子滤波 运动模型 人体骨架模型 human motion tracking adaptive particle filtering motion model human model
  • 相关文献

参考文献6

二级参考文献22

  • 1Gordon N J, Salmond D J, Smith A F M. Novel approach "to nonlinear / non-Gaussian Bayesian state estimation[J]. IEE Proceedings-F, 1993,140(2),107-113.
  • 2Smith L, Aitken V. Analysis comparison of the generic and auxiliary particle filtering frameworks [J]. IEEE CCECE/CCGEI, Ottawa, 2006: 2124-2127.
  • 3van der MERMER, DOUCET A, de FREITAS N, et al. The Unscented Particle Filter [EB/OL]. London: Cambridge University, 2000. http: / / Citeseer.ist.psu.edu /325754.html.
  • 4M Sanjeev Arulampalam, Maskell S, Gordon N,et al. A Tutorial on Particle. Filters for Online Nonlinear /Non-Gaussian Bayesian Tracking[C]. IEEE Transaction on signal processing,2002,50(2): 174-188.
  • 5Crisan D, Doucet A. A survey of convergence results on particle filtering methods for practitioners[J]. IEEE Transaction On Signal Processing, 2002,50(3):736-746.
  • 6Zhuang Yueting,IEEE Proc Int Conf Image Processing,1999年,25页
  • 7刘明宝,计算机学报,1998年,21卷,6期,528页
  • 8Chen Z,IEEE Trans Syst Man Cybern,1992年,22卷,2期,336页
  • 9Bregler C, Malik J. Tracking people with twists and exponential maps[A]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998. 8~15.
  • 10Cham T J, Rehg J M. A multiple hypothesis approach to figure tracking[A]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999. 239~245.

共引文献43

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部