期刊文献+

Property(ω_1) and Single Valued Extension Property 被引量:1

Property(ω_1) and Single Valued Extension Property
下载PDF
导出
摘要 In this note we study the property(ω1),a variant of Weyl's theorem by means of the single valued extension property,and establish for a bounded linear operator defined on a Banach space the necessary and sufficient condition for which property(ω1) holds.As a consequence of the main result,the stability of property(ω1) is discussed. In this note we study the property(ω1),a variant of Weyl's theorem by means of the single valued extension property,and establish for a bounded linear operator defined on a Banach space the necessary and sufficient condition for which property(ω1) holds.As a consequence of the main result,the stability of property(ω1) is discussed.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第6期1009-1014,共6页 数学研究与评论(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities (Grant No.GK200901015) the Innovation Funds of Graduate Programs,SNU (Grant No.2009cxs028)
关键词 property(ω1) single valued extension property. property(ω1) single valued extension property.
  • 相关文献

参考文献13

  • 1WEYL H.Urber beschrankte quadratische Formen, deren Differenz vollstetig ist [J]. Rend. Circ. Mat. Palermo, 1909, 27: 373-392.
  • 2HARTE R, LEE W Y. Another note on Weyl's theorem [J]. Trans. Amer. Math. Soc., 1997, 849(5): 2115-2124.
  • 3RAKOCEVIC V. Operators obeying a-Weyl's theorem [J]. Rev. Roumaine Math. Pures Appl., 1989, 34(10): 915-919.
  • 4RAKOCEVIC V. On a class of operators [J]. Mat. Vesnik, 1985, 37(4): 423-426.
  • 5AIENA P, PENA P. Variation on Weyl's theorem [J]. J. Math. Anal. Appl., 2006, 324(1): 566-579.
  • 6AIENA P, BIONDI M T. Property (w) and perturbations [J]. J. Math. Anal. Appl., 2007, 336(1): 683-692.
  • 7FINCH J K. The single valued extension property on a Banach space [J]. Pacific J. Math., 1975, 58(1)61-69.
  • 8OUDGHIRI M. Weyl's and Browder's theorems for operators satisfying the SVEP [J]. Studia Math., 2004, 16a(1): 85-101.
  • 9AMOUCH M. Weyl type theorems for operators satisfying the single-valued extension property [J]. J. Math. Anal. Appl., 2007, 326(2): 1476-1484.
  • 10LAURSEN K B, NEUIVIANN M N. Introduction to Local Spectral Theory [M]. The Clarendon Press, Oxford University Press, New York, 2000.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部