期刊文献+

The Weighted Estimates of the Schrodinger Operators on the Nilpotent Lie Group

The Weighted Estimates of the Schrodinger Operators on the Nilpotent Lie Group
下载PDF
导出
摘要 In this paper we consider the SchrSdinger operator -△G + W on the nilpotent Lie group G where the nonnegative potential W belongs to the reverse H51der class Bq1 for some q1 ≥ D and D is the dimension at infinity of G. The weighted L^p -L6q estimates for the operators W^a(-△G + W)^-β and W^a△G(-△G + W)^-β are obtained. In this paper we consider the SchrSdinger operator -△G + W on the nilpotent Lie group G where the nonnegative potential W belongs to the reverse H51der class Bq1 for some q1 ≥ D and D is the dimension at infinity of G. The weighted L^p -L6q estimates for the operators W^a(-△G + W)^-β and W^a△G(-△G + W)^-β are obtained.
作者 Yu LIU
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第6期1023-1031,共9页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant Nos .10726064 10901018) and the Foundation of Theorical Research of Engineering Research Institute of University of Science and Technology Beijing.
关键词 nilpotent Lie group Schr6dinger operators reverse HSlder class. nilpotent Lie group Schr6dinger operators reverse HSlder class.
  • 相关文献

参考文献9

  • 1FEFFERMAN C L. The uncertainty principle [J]. Bull. Amer. Math. Soc. (N.S.), 1983, 9(2): 129-206.
  • 2SHEN Zhongwei. L^p estimates for Schrodinger operators with certain potentials [J]. Ann. Inst. Fourier (Grenoble), 1995, 45(2): 513-546.
  • 3KURATA K, SUGANO S. A remark on estimates for uniformly elliptic operators on weighted L^p spaces and Morrey spaces [J]. Math. Nachr., 2000, 209: 137-150.
  • 4LU Guozhen. A Fefferman-Phong type inequality for degenerate vector fields and applications [J]. Panamer. Math. J., 1996, 6(4): 37-57.
  • 5LI Hongquan. Estimations L^p des operateurs de Schro-dinger sur les groupes nilpotents [J]. J. Funct. Anal., 1999, 161(1): 152-218. (in French).
  • 6SUGANO S. Estimates for the operators V^α(-Δ+ V)^-β and VαΔ↓(-Δ + V)^-β with certain non-negative potentials V [J]. Tokyo J. Math., 1998, 21(2): 441-452.
  • 7LIU Yu. The weighted estimates for the operators W^α(-ΔG + W)^-β and W^αΔ↓G(-/ΔG + W)^-β on the stratified Lie group G [J]. J. Math. Anal. Appl., 2009, 349(1): 235-244.
  • 8NAGEL A, STEIN E M, WAIGNER S. Balls and metrics defined by vector fields I: Basic properties [J]. Acta Math., 1985, 155(1-2): 103-147.
  • 9BERNARDIS A, SALINAS O. Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type [J]. Studia Math., 1994, 108(2): 201-207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部