摘要
We propose an improved design of photonic crystal fiber (PCF) with ultra broadband-flattened dispersion and ultra-low confinement loss in the telecommunication window.The design is considerably suitable for the generation of wideband supercontinuum spectrum.Numerical results reveal that the proposed PCF structure possesses a low dispersion of 0±1.5 ps/(nm·km) in the wavelengths ranging from 1.134 to 1.805 μm (approximately 700-nm bandwidth) with a confinement loss of less than 10 8 dB/km.In addition,a nonlinear coefficient greater than 11.47 (W·km) 1 and a dispersion slope of as low as 0.005694 ps/(nm 2 ·km) are obtained at 1.55-μm wavelength.Moreover,a symmetric flat supercontinuum spectrum with a 10-dB bandwidth of 190 nm is achieved in a 3-m-long fiber,verifying the excellent optical features of the innovative PCF.
We propose an improved design of photonic crystal fiber (PCF) with ultra broadband-flattened dispersion and ultra-low confinement loss in the telecommunication window.The design is considerably suitable for the generation of wideband supercontinuum spectrum.Numerical results reveal that the proposed PCF structure possesses a low dispersion of 0±1.5 ps/(nm·km) in the wavelengths ranging from 1.134 to 1.805 μm (approximately 700-nm bandwidth) with a confinement loss of less than 10 8 dB/km.In addition,a nonlinear coefficient greater than 11.47 (W·km) 1 and a dispersion slope of as low as 0.005694 ps/(nm 2 ·km) are obtained at 1.55-μm wavelength.Moreover,a symmetric flat supercontinuum spectrum with a 10-dB bandwidth of 190 nm is achieved in a 3-m-long fiber,verifying the excellent optical features of the innovative PCF.
基金
supported by the Northwestern Polytechnical University Foundation for Fundamental Research
Open Research Fund of the State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences